Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Oct;152(1):255–259. doi: 10.1128/jb.152.1.255-259.1982

Comparison of kinetics of active tetracycline uptake and active tetracycline efflux in sensitive and plasmid RP4-containing Pseudomonas putida.

R C Hedstrom, B P Crider, R G Eagon
PMCID: PMC221399  PMID: 7118827

Abstract

Membrane vesicles prepared from tetracycline-sensitive cells of Pseudomonas putida took up tetracycline by an active transport system with an apparent Km of 2.5 mM and a Vmax of 50 nmol min-1 mg protein-1. In contrast, resistance determinant RP4-containing P. putida had an active high-affinity efflux system for tetracycline with a Km of 2.0 to 3.54 microM and a Vmax of 0.15 nmol min-1 mg protein-1. Thus, the efflux system of tetracycline-resistant P. putida(RP4) had an average of 1,000-fold greater affinity for tetracycline than the influx system of tetracycline-sensitive cells. From these results, it is clear that a major mechanism of tetracycline resistance in RP4-containing P. putida is an active tetracycline efflux mechanism. There was also evidence for a second tetracycline efflux system with low affinity for tetracycline n P. putida(RP4). This efflux system had a Km of 0.25 mM and a Vmax of 1.45 nmol min-1 protein-1. Whether this low-affinity efflux system was also present in tetracycline-sensitive P. putida could not be discerned from these experiments.

Full text

PDF
256

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball P. R., Shales S. W., Chopra I. Plasmid-mediated tetracycline resistance in Escherichia coli involves increased efflux of the antibiotic. Biochem Biophys Res Commun. 1980 Mar 13;93(1):74–81. doi: 10.1016/s0006-291x(80)80247-6. [DOI] [PubMed] [Google Scholar]
  2. Eagon R. G., Phibbs P. V., Jr Kinetics of transport of glucose, fructose, and mannitol by Pseudomonas aeruginosa. Can J Biochem. 1971 Sep;49(9):1031–1041. doi: 10.1139/o71-151. [DOI] [PubMed] [Google Scholar]
  3. FRANKLIN T. J., GODFREY A. RESISTANCE OF ESCHERICHIA COLI TO TETRACYCLINES. Biochem J. 1965 Jan;94:54–60. doi: 10.1042/bj0940054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kaback H. R. Transport in isolated bacterial membrane vesicles. Methods Enzymol. 1974;31:698–709. doi: 10.1016/0076-6879(74)31075-0. [DOI] [PubMed] [Google Scholar]
  5. Levy S. B., McMurry L. Plasmid-determined tetracycline resistance involves new transport systems for tetracycline. Nature. 1978 Nov 2;276(5683):90–92. doi: 10.1038/276090a0. [DOI] [PubMed] [Google Scholar]
  6. Loftfield R. B., Eigner E. A., Pastuszyn A., Lövgren T. N., Jakubowski H. Conformational changes during enzyme catalysis: role of water in the transition state. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3374–3378. doi: 10.1073/pnas.77.6.3374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  8. McMurry L. M., Cullinane J. C., Petrucci R. E., Jr, Levy S. B. Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli. Antimicrob Agents Chemother. 1981 Sep;20(3):307–313. doi: 10.1128/aac.20.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Samra Z., Krausz-Steinmetz J., Sompolinsky D. Transport of tetracyclines through the bacterial cell membrane assayed by fluorescence: a study with susceptible and resistant strains of Staphylococcus aureus and Escherichia coli. Microbios. 1978;21(83):7–21. [PubMed] [Google Scholar]
  10. Sompolinsky D., Samra Z. Plasmid-determined resistance to tetracycline. Microbios. 1981;30(120):109–130. [PubMed] [Google Scholar]
  11. Tseng J. T., Bryan L. E. Mechanisms of R factor R931 and chromosomal tetracycline resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1973 May;3(5):638–641. doi: 10.1128/aac.3.5.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Weckesser J., Magnuson J. A. Light-induced tetracycline accumulation by Rhodopseudomonas sphaeroides. J Supramol Struct. 1976;4(4):515–520. doi: 10.1002/jss.400040411. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES