Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1982 Nov;152(2):572–583. doi: 10.1128/jb.152.2.572-583.1982

Suppression of the ssb-1 and ssb-113 mutations of Escherichia coli by a wild-type rep gene, NaCl, and glucose.

E S Tessman, P K Peterson
PMCID: PMC221504  PMID: 6752116

Abstract

The ssb-1 mutation confers severe temperature sensitivity and UV sensitivity on many strains of Escherichia coli K-12 and C, including strain C1412. However, ssb-1 confers only slight temperature sensitivity and slight UV sensitivity on strain C1a, suggesting that strain C1a contains extragenic suppressors of ssb-1. We found that introduction of the wild-type rep gene from C1a into strain C1412 ssb-1 gave strong suppression of temperature sensitivity and moderate suppression of UV sensitivity. Also, the C1a rep+ gene mildly suppressed the temperature sensitivity conferred by the ssb-113 mutation, formerly called lexC113. Suppression of the C1412 ssb-1 growth defect by C1a rep+ rendered the cells Gro- for phi X174. In contrast to the positive suppression of ssb-1 and ssb-113 by a wild-type rep gene, mutant rep alleles enhanced the severity of the ssb-1 defect, with several C1a ssb-1 double mutants being either more temperature sensitive or more UV sensitive than C1a ssb-1, depending on which mutant rep allele was used. As a control, the same rep alleles in combination with a dnaB mutation gave an allele-independent increase in temperature sensitivity. Our results on suppression of ssb-1 by rep and on the role of the genetic background in this suppression suggested that the rep and ssb proteins interact to form a subcomplex of the total DNA replication complex and that this subcomplex has some function in repair. The effects of NaCl and glucose on suppression of both the temperature sensitivity and the UV sensitivity conferred by ssb-1 and ssb-113 are described. The degree of suppression of temperature sensitivity by salt or glucose was dependent on the source of the wild-type rep allele, as well as on the genetic background.

Full text

PDF
575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerbach J. I., Howard-Flanders P. Identification of wild-type or mutant alleles of bacterial genes cloned on a bacteriophage lambda vector: isolation of uvrC(am) and other mutants. J Bacteriol. 1981 May;146(2):713–717. doi: 10.1128/jb.146.2.713-717.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baluch J., Chase J. W., Sussman R. Synthesis of recA protein and induction of bacteriophage lambda in single-strand deoxyribonucleic acid-binding protein mutants of Escherichia coli. J Bacteriol. 1980 Nov;144(2):489–498. doi: 10.1128/jb.144.2.489-498.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Calendar R., Lindqvist B., Sironi G., Clark A. J. Characterization of REP- mutants and their interaction with P2 phage. Virology. 1970 Jan;40(1):72–83. doi: 10.1016/0042-6822(70)90380-6. [DOI] [PubMed] [Google Scholar]
  4. Craig N. L., Roberts J. W. E. coli recA protein-directed cleavage of phage lambda repressor requires polynucleotide. Nature. 1980 Jan 3;283(5742):26–30. doi: 10.1038/283026a0. [DOI] [PubMed] [Google Scholar]
  5. D'Ari R., Jaffé-Brachet A., Touati-Schwartz D., Yarmolinsky M. B. A dnaB analog specified by bacteriophage P1. J Mol Biol. 1975 May 25;94(3):341–366. doi: 10.1016/0022-2836(75)90207-7. [DOI] [PubMed] [Google Scholar]
  6. Denhardt D. T., Dressler D. H., Hathaway A. THE ABORTIVE REPLICATION OF PhiX174 DNA IN A RECOMBINATION-DEFICIENT MUTANT OF Escherichia coli. Proc Natl Acad Sci U S A. 1967 Mar;57(3):813–820. doi: 10.1073/pnas.57.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eisenberg S., Griffith J., Kornberg A. phiX174 cistron A protein is a multifunctional enzyme in DNA replication. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3198–3202. doi: 10.1073/pnas.74.8.3198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glassberg J., Meyer R. R., Kornberg A. Mutant single-strand binding protein of Escherichia coli: genetic and physiological characterization. J Bacteriol. 1979 Oct;140(1):14–19. doi: 10.1128/jb.140.1.14-19.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greenberg J., Berends L. J., Donch J., Green M. H. exrB: a malB-linked gene in Escherichia coli B involved in sensitivity to radiation and filament formation. Genet Res. 1974 Apr;23(2):175–184. doi: 10.1017/s0016672300014798. [DOI] [PubMed] [Google Scholar]
  10. Greenberg J., Donch J. Sensitivity to elevated temperatures in exrB strains of Escherichia coli. Mutat Res. 1974 Dec;25(3):403–405. doi: 10.1016/0027-5107(74)90070-0. [DOI] [PubMed] [Google Scholar]
  11. Gross J. D. DNA replication in bacteria. Curr Top Microbiol Immunol. 1972;57:39–74. doi: 10.1007/978-3-642-65297-4_2. [DOI] [PubMed] [Google Scholar]
  12. Humbert R., Simoni R. D. Genetic and biomedical studies demonstrating a second gene coding for asparagine synthetase in Escherichia coli. J Bacteriol. 1980 Apr;142(1):212–220. doi: 10.1128/jb.142.1.212-220.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson B. F. Genetic mapping of the lexC-113 mutation. Mol Gen Genet. 1977 Nov 29;157(1):91–97. doi: 10.1007/BF00268691. [DOI] [PubMed] [Google Scholar]
  14. Kohno T., Roth J. Electrolyte effects on the activity of mutant enzymes in vivo and in vitro. Biochemistry. 1979 Apr 3;18(7):1386–1392. doi: 10.1021/bi00574a041. [DOI] [PubMed] [Google Scholar]
  15. Kornberg A., Scott J. F., Bertsch L. L. ATP utilization by rep protein in the catalytic separation of DNA strands at a replicating fork. J Biol Chem. 1978 May 10;253(9):3298–3304. [PubMed] [Google Scholar]
  16. Lieberman H. B., Witkin E. M. Variable expression of the ssb--1 allele in different strains of Escherichia coli K12 and B: differential suppression of its effects on DNA replication, DNA repair and ultraviolet mutagenesis. Mol Gen Genet. 1981;183(2):348–355. doi: 10.1007/BF00270639. [DOI] [PubMed] [Google Scholar]
  17. Meyer R. R., Glassberg J., Kornberg A. An Escherichia coli mutant defective in single-strand binding protein is defective in DNA replication. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1702–1705. doi: 10.1073/pnas.76.4.1702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meyer R. R., Glassberg J., Scott J. V., Kornberg A. A temperature-sensitive single-stranded DNA-binding protein from Escherichia coli. J Biol Chem. 1980 Apr 10;255(7):2897–2901. [PubMed] [Google Scholar]
  19. Meyer R. R., Rein D. C., Glassberg J. The product of the lexC gene of Escherichia coli is single-stranded DNA-binding protein. J Bacteriol. 1982 Apr;150(1):433–435. doi: 10.1128/jb.150.1.433-435.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Meyer R. R., Voegele D. W., Ruben S. M., Rein D. C., Trela J. M. Influence of single-stranded DNA-binding protein on recA induction in Escherichia coli. Mutat Res. 1982 Jun;94(2):299–313. doi: 10.1016/0027-5107(82)90293-7. [DOI] [PubMed] [Google Scholar]
  21. Molineux I. J., Friedman S., Gefter M. L. Purification and properties of the Escherichia coli deoxyribonucleic acid-unwinding protein. Effects on deoxyribonucleic acid synthesis in vitro. J Biol Chem. 1974 Oct 10;249(19):6090–6098. [PubMed] [Google Scholar]
  22. Molineux I. J., Gefter M. L. Properties of the Escherichia coli in DNA binding (unwinding) protein: interaction with DNA polymerase and DNA. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3858–3862. doi: 10.1073/pnas.71.10.3858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Phizicky E. M., Roberts J. W. Induction of SOS functions: regulation of proteolytic activity of E. coli RecA protein by interaction with DNA and nucleoside triphosphate. Cell. 1981 Jul;25(1):259–267. doi: 10.1016/0092-8674(81)90251-8. [DOI] [PubMed] [Google Scholar]
  24. Resnick J., Sussman R. Escherichia coli single-strand DNA binding protein from wild type and lexC113 mutant affects in vitro proteolytic cleavage of phage lambda repressor. Proc Natl Acad Sci U S A. 1982 May;79(9):2832–2835. doi: 10.1073/pnas.79.9.2832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rosner J. L. Formation, induction, and curing of bacteriophage P1 lysogens. Virology. 1972 Jun;48(3):679–689. doi: 10.1016/0042-6822(72)90152-3. [DOI] [PubMed] [Google Scholar]
  26. Scott J. F., Eisenberg S., Bertsch L. L., Kornberg A. A mechanism of duplex DNA replication revealed by enzymatic studies of phage phi X174: catalytic strand separation in advance of replication. Proc Natl Acad Sci U S A. 1977 Jan;74(1):193–197. doi: 10.1073/pnas.74.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sigal N., Delius H., Kornberg T., Gefter M. L., Alberts B. A DNA-unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerases. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3537–3541. doi: 10.1073/pnas.69.12.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tessman E. S., Peterson P. K. Bacterial rep- mutations that block development of small DNA bacteriophages late in infection. J Virol. 1976 Nov;20(2):400–412. doi: 10.1128/jvi.20.2.400-412.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tessman I., Fassler J. S., Bennett D. C. Relative map location of the rep and rho genes of Escherichia coli. J Bacteriol. 1982 Sep;151(3):1637–1640. doi: 10.1128/jb.151.3.1637-1640.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weiner J. H., Bertsch L. L., Kornberg A. The deoxyribonucleic acid unwinding protein of Escherichia coli. Properties and functions in replication. J Biol Chem. 1975 Mar 25;250(6):1972–1980. [PubMed] [Google Scholar]
  31. Whittier R. F., Chase J. W. DNA repair in E. coli strains deficient in single-strand DNA binding protein. Mol Gen Genet. 1981;183(2):341–347. doi: 10.1007/BF00270638. [DOI] [PubMed] [Google Scholar]
  32. Yarranton G. T., Das R. H., Gefter M. L. Enzyme-catalyzed DNA unwinding. Mechanism of action of helicase III. J Biol Chem. 1979 Dec 10;254(23):12002–12006. [PubMed] [Google Scholar]
  33. Yarranton G. T., Gefter M. L. Enzyme-catalyzed DNA unwinding: studies on Escherichia coli rep protein. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1658–1662. doi: 10.1073/pnas.76.4.1658. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES