Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1977 Apr 1;69(4):449–461. doi: 10.1085/jgp.69.4.449

Shear forces and blood vessel radii in the cardiovascular system

PMCID: PMC2215050  PMID: 853286

Abstract

What mathematical or physiological principles govern the radii of blood vessels in the cardiovascular system and by what mechanisms are those principles implemented? This question is studied in the contexts of fluid dynamics and physiology of the cardiovascular system, and a possible answer is examined in the light of empirical data.

Full Text

The Full Text of this article is available as a PDF (679.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atabek H. B., Ling S. C., Patel D. J. Analysis of coronary flow fields in thoracotomized dogs. Circ Res. 1975 Dec;37(6):752–761. doi: 10.1161/01.res.37.6.752. [DOI] [PubMed] [Google Scholar]
  2. BRAUNWALD E., SARNOFF S. J., CASE R. B., STAINSBY W. N., WELCH G. H., Jr Hemodynamic determinants of coronary flow: effect of changes in aortic pressure and cardiac output on the relationship between myocardial oxygen consumption and coronary flow. Am J Physiol. 1958 Jan;192(1):157–163. doi: 10.1152/ajplegacy.1957.192.1.157. [DOI] [PubMed] [Google Scholar]
  3. Caro C. G., Fitz-Gerald J. M., Schroter R. C. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci. 1971 Feb 16;177(1046):109–159. doi: 10.1098/rspb.1971.0019. [DOI] [PubMed] [Google Scholar]
  4. Flaherty J. T., Pierce J. E., Ferrans V. J., Patel D. J., Tucker W. K., Fry D. L. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ Res. 1972 Jan;30(1):23–33. doi: 10.1161/01.res.30.1.23. [DOI] [PubMed] [Google Scholar]
  5. Fry D. L. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res. 1968 Feb;22(2):165–197. doi: 10.1161/01.res.22.2.165. [DOI] [PubMed] [Google Scholar]
  6. Fry D. L. Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog. Circ Res. 1969 Jan;24(1):93–108. doi: 10.1161/01.res.24.1.93. [DOI] [PubMed] [Google Scholar]
  7. KATZ L. N., FEINBERG H. The relation of cardiac effort to myocardial oxygen consumption and coronary flow. Circ Res. 1958 Sep;6(5):656–669. doi: 10.1161/01.res.6.5.656. [DOI] [PubMed] [Google Scholar]
  8. Murray C. D. The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. Proc Natl Acad Sci U S A. 1926 Mar;12(3):207–214. doi: 10.1073/pnas.12.3.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PATEL D. J., DE FREITAS F. M., GREENFIELD J. C., Jr, FRY D. L. RELATIONSHIP OF RADIUS TO PRESSURE ALONG THE AORTA IN LIVING DOGS. J Appl Physiol. 1963 Nov;18:1111–1117. doi: 10.1152/jappl.1963.18.6.1111. [DOI] [PubMed] [Google Scholar]
  10. Roach M. R., Scott S., Ferguson G. G. The hemodynamic importance of the geometry of bifurcations in the circle of Willis (glass model studies). Stroke. 1972 May-Jun;3(3):255–267. doi: 10.1161/01.str.3.3.255. [DOI] [PubMed] [Google Scholar]
  11. Rodbard S. Vascular caliber. Cardiology. 1975;60(1):4–49. doi: 10.1159/000169701. [DOI] [PubMed] [Google Scholar]
  12. SARNOFF S. J., BRAUNWALD E., WELCH G. H., Jr, CASE R. B., STAINSBY W. N., MACRUZ R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol. 1958 Jan;192(1):148–156. doi: 10.1152/ajplegacy.1957.192.1.148. [DOI] [PubMed] [Google Scholar]
  13. SUWA N., NIWA T., FUKASAWA H., SASAKI Y. Estimation of intravascular blood pressure gradient by mathematical analysis of arterial casts. Tohoku J Exp Med. 1963 Mar 25;79:168–198. doi: 10.1620/tjem.79.168. [DOI] [PubMed] [Google Scholar]
  14. Starling E. H., Visscher M. B. The regulation of the energy output of the heart. J Physiol. 1927 Jan 12;62(3):243–261. doi: 10.1113/jphysiol.1927.sp002355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WIEDEMAN M. P. Dimensions of blood vessels from distributing artery to collecting vein. Circ Res. 1963 Apr;12:375–378. doi: 10.1161/01.res.12.4.375. [DOI] [PubMed] [Google Scholar]
  16. WIEDEMANN M. P. Lengths and diameters of peripheral arterial vessels in the living animal. Circ Res. 1962 Apr;10:686–690. doi: 10.1161/01.res.10.4.686. [DOI] [PubMed] [Google Scholar]
  17. Warren B. A. Changes following emboli in small veins. Vasc Surg. 1968 Dec;2(4):205–213. doi: 10.1177/153857446800200404. [DOI] [PubMed] [Google Scholar]
  18. Warren B. A., Shubik P. The growth of the blood supply to melanoma transplants in the hamster cheek pouch. Lab Invest. 1966 Feb;15(2):464–478. [PubMed] [Google Scholar]
  19. Zamir M. Optimality principles in arterial branching. J Theor Biol. 1976 Oct 7;62(1):227–251. doi: 10.1016/0022-5193(76)90058-8. [DOI] [PubMed] [Google Scholar]
  20. Zamir M. The role of shear forces in arterial branching. J Gen Physiol. 1976 Feb;67(2):213–222. doi: 10.1085/jgp.67.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES