Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1984 May 1;83(5):751–769. doi: 10.1085/jgp.83.5.751

Activation and inactivation of single calcium channels in snail neurons

PMCID: PMC2215653  PMID: 6330277

Abstract

Activation and inactivation properties of Ca currents were investigated by studying the behavior of single Ca channels in snail neurons. The methods described in the previous paper were used. In addition, a zero- phase digital filter has been incorporated to improve the analysis of latencies to first opening, or waiting times. It was found that a decrease in the probability of single channel opening occurred with time. This was especially marked at 29 degrees C and paralleled the inactivation observed in macroscopic currents. The fact that a single channel was observed means that there is a significant amount of reopening from the "inactivated" state. Small depolarizations at 18 degrees C showed little inactivation. From these measurements, histograms of single channel open, closed, and waiting times were analyzed to estimate the rate constants of a three-state model of activation. Two serious discrepancies with the model were found. First, waiting time distributions at -20 mV were slower than those predicted by parameters obtained from an analysis of the single channel closed times. Second, it was shown that the time and the magnitude of the peak of the waiting time histogram were inconsistent with a three-state model. It is concluded that a minimum of four states are involved in activation. Some four-state models may be eliminated from further consideration. However, a comprehensive model of Ca channel kinetics must await further measurements.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brehm P., Eckert R. Calcium entry leads to inactivation of calcium channel in Paramecium. Science. 1978 Dec 15;202(4373):1203–1206. doi: 10.1126/science.103199. [DOI] [PubMed] [Google Scholar]
  2. Brown A. M., Camerer H., Kunze D. L., Lux H. D. Similarity of unitary Ca2+ currents in three different species. Nature. 1982 Sep 9;299(5879):156–158. doi: 10.1038/299156a0. [DOI] [PubMed] [Google Scholar]
  3. Brown A. M., Morimoto K., Tsuda Y., wilson D. L. Calcium current-dependent and voltage-dependent inactivation of calcium channels in Helix aspersa. J Physiol. 1981 Nov;320:193–218. doi: 10.1113/jphysiol.1981.sp013944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown A. M., Tsuda Y., Wilson D. L. A description of activation and conduction in calcium channels based on tail and turn-on current measurements in the snail. J Physiol. 1983 Nov;344:549–583. doi: 10.1113/jphysiol.1983.sp014956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown R. F. Compartmental system analysis: state of the art. IEEE Trans Biomed Eng. 1980 Jan;27(1):1–11. doi: 10.1109/TBME.1980.326685. [DOI] [PubMed] [Google Scholar]
  6. Cachelin A. B., de Peyer J. E., Kokubun S., Reuter H. Ca2+ channel modulation by 8-bromocyclic AMP in cultured heart cells. Nature. 1983 Aug 4;304(5925):462–464. doi: 10.1038/304462a0. [DOI] [PubMed] [Google Scholar]
  7. Colquhoun D., Hawkes A. G. On the stochastic properties of single ion channels. Proc R Soc Lond B Biol Sci. 1981 Mar 6;211(1183):205–235. doi: 10.1098/rspb.1981.0003. [DOI] [PubMed] [Google Scholar]
  8. Colquhoun D., Hawkes A. G. Relaxation and fluctuations of membrane currents that flow through drug-operated channels. Proc R Soc Lond B Biol Sci. 1977 Nov 14;199(1135):231–262. doi: 10.1098/rspb.1977.0137. [DOI] [PubMed] [Google Scholar]
  9. Dionne V. E., Leibowitz M. D. Acetylcholine receptor kinetics. A description from single-channel currents at snake neuromuscular junctions. Biophys J. 1982 Sep;39(3):253–261. doi: 10.1016/S0006-3495(82)84515-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol. 1982 Oct;331:599–635. doi: 10.1113/jphysiol.1982.sp014394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jennrich R. I., Ralston M. L. Fitting nonlinear models to data. Annu Rev Biophys Bioeng. 1979;8:195–238. doi: 10.1146/annurev.bb.08.060179.001211. [DOI] [PubMed] [Google Scholar]
  12. Lux H. D., Brown A. M. Patch and whole cell calcium currents recorded simultaneously in snail neurons. J Gen Physiol. 1984 May;83(5):727–750. doi: 10.1085/jgp.83.5.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lux H. D., Nagy K. Single channel Ca2+ currents in Helix pomatia neurons. Pflugers Arch. 1981 Sep;391(3):252–254. doi: 10.1007/BF00596179. [DOI] [PubMed] [Google Scholar]
  14. Reuter H., Stevens C. F., Tsien R. W., Yellen G. Properties of single calcium channels in cardiac cell culture. Nature. 1982 Jun 10;297(5866):501–504. doi: 10.1038/297501a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES