Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1984 May 1;83(5):633–656. doi: 10.1085/jgp.83.5.633

The active ion transport properties of canine lingual epithelia in vitro. Implications for gustatory transduction

PMCID: PMC2215656  PMID: 6330275

Abstract

The electrophysiological properties of the dorsal and ventral canine lingual epithelium are studied in vitro. The dorsal epithelium contains a special ion transport system activated by mucosal solutions hyperosmotic in NaCl or LiCl. Hyperosmotic KCl is significantly less effective as an activator of this system. The lingual frenulum does not contain the transport system. In the dorsal surface it is characterized by a rapid increase in inward current and can be quantitated as a second component in the time course of either the open-circuit potential or short-circuit current when the mucosal solution is hyperosmotic in NaCl or LiCl. The increased inward current (hyperosmotic response) can be eliminated by amiloride (10(-4) M). The specific location of this transport system in the dorsal surface and the fact that it operates over the concentration range characteristic of mammalian salt taste suggests a possible link to gustatory transduction. This possibility is tested by recording neural responses in the rat to NaCl and KCl over a concentration range including the hyperosmotic. We demonstrate that amiloride specifically blocks the response to NaCl over the hyperosmotic range while affecting the KCl response significantly less. The results suggest that gustatory transduction for NaCl is mediated by Na entry into the taste cells via the same amiloride-sensitive pathway responsible for the hyperosmotic response in vitro. Further studies of the in vitro system give evidence for paracellular as well as transcellular current paths. The transmural current-voltage relations are linear under both symmetrical and asymmetrical conditions. After ouabain treatment under symmetrical conditions, the short-circuit current decays to zero. The increase in resistance, though significant, is small, which suggests a sizeable shunt pathway for current. Flux measurements show that sodium is absorbed under symmetrical conditions. Mucosal solutions hyperosmotic in various sugars also induce an amiloride-sensitive inward current. In summary, this work provides evidence that the sodium taste receptor is most probably a sodium transport system, specifically adapted to the dorsal surface of the tongue. The transport paradigm of gustation also suggests a simple model for electric taste and possible mechanisms for sweet taste.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEIDLER L. M. A theory of taste stimulation. J Gen Physiol. 1954 Nov 20;38(2):133–139. doi: 10.1085/jgp.38.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bindslev N., Tormey J. M., Wright E. M. The effects of electrical and osmotic gradients on lateral intercellular spaces and membrane conductance in a low resistance epithelium. J Membr Biol. 1974;19(4):357–380. doi: 10.1007/BF01869986. [DOI] [PubMed] [Google Scholar]
  3. Bujas Z., Frank M., Pfaffmann C. Neural effects of electrical taste stimuli. Sens Processes. 1979 Dec;3(4):353–365. [PubMed] [Google Scholar]
  4. Cala P. M. Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways. J Gen Physiol. 1980 Dec;76(6):683–708. doi: 10.1085/jgp.76.6.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeSimone J. A., Heck G. L., DeSimone S. K. Active ion transport in dog tongue: a possible role in taste. Science. 1981 Nov 27;214(4524):1039–1041. doi: 10.1126/science.7302576. [DOI] [PubMed] [Google Scholar]
  6. DeSimone J. A. Perturbations in the structure of the double layer at an enzymic surface. J Theor Biol. 1977 Sep 21;68(2):225–240. doi: 10.1016/0022-5193(77)90161-8. [DOI] [PubMed] [Google Scholar]
  7. DiBona D. R., Civan M. M. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways. J Membr Biol. 1973;12(2):101–128. doi: 10.1007/BF01869994. [DOI] [PubMed] [Google Scholar]
  8. Ericson A. C., Spring K. R. Coupled NaCl entry into Necturus gallbladder epithelial cells. Am J Physiol. 1982 Sep;243(3):C140–C145. doi: 10.1152/ajpcell.1982.243.3.C140. [DOI] [PubMed] [Google Scholar]
  9. Ericson A. C., Spring K. R. Volume regulation by Necturus gallbladder: apical Na+-H+ and Cl(-)-HCO-3 exchange. Am J Physiol. 1982 Sep;243(3):C146–C150. doi: 10.1152/ajpcell.1982.243.3.C146. [DOI] [PubMed] [Google Scholar]
  10. Essig A., Caplan S. R. Energetics of active transport processes. Biophys J. 1968 Dec;8(12):1434–1457. doi: 10.1016/S0006-3495(68)86565-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hallbäck D. A., Jodal M., Lundgren O. Vascular anatomy and tissue osmolality in the filiform and fungiform papillae of the cat's tongue. Acta Physiol Scand. 1979 Apr;105(4):469–480. doi: 10.1111/j.1748-1716.1979.tb00112.x. [DOI] [PubMed] [Google Scholar]
  12. Hayashi H. Rapid penetration of potassium and other salts into the frog tongue papilla. Jpn J Physiol. 1978;28(1):33–45. doi: 10.2170/jjphysiol.28.33. [DOI] [PubMed] [Google Scholar]
  13. Kamo N., Miyake M., Kurihara K., Kobatake Y. Physicochemical studies of taste reception. II. Possible mechanism of generation of taste receptor potential induced by salt stimuli. Biochim Biophys Acta. 1974 Oct 10;367(1):11–23. doi: 10.1016/0005-2736(74)90130-8. [DOI] [PubMed] [Google Scholar]
  14. Mistretta C. M. Permeability of tongue epithelium and its relation to taste. Am J Physiol. 1971 May;220(5):1162–1167. doi: 10.1152/ajplegacy.1971.220.5.1162. [DOI] [PubMed] [Google Scholar]
  15. Moreno J. H., Diamond J. M. Cation permeation mechanisms and cation selectivity in "tight junctions" of gallbladder epithelium. Membranes. 1975;3:383–497. [PubMed] [Google Scholar]
  16. Nagahama S., Kobatake Y., Kurihara K. Effect of Ca2+, cyclic GMP, and cyclic AMP added to artificial solution perfusing lingual artery on frog gustatory nerve responses. J Gen Physiol. 1982 Nov;80(5):785–800. doi: 10.1085/jgp.80.5.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reuss L., Finn A. L. Effects of luminal hyperosmolality on electrical pathways of Necturas gallbladder. Am J Physiol. 1977 Mar;232(3):C99–108. doi: 10.1152/ajpcell.1977.232.3.C99. [DOI] [PubMed] [Google Scholar]
  18. Sato T., Sugimoto K., Okada Y. Ionic basis of receptor potential in frog taste cell in response to salt stimuli. Jpn J Physiol. 1982;32(3):459–462. doi: 10.2170/jjphysiol.32.459. [DOI] [PubMed] [Google Scholar]
  19. Scalzi H. A. The cytoarchitecture of gustatory receptors from the rabbit foliate papillae. Z Zellforsch Mikrosk Anat. 1967;80(3):413–435. doi: 10.1007/BF00339331. [DOI] [PubMed] [Google Scholar]
  20. Schiffman S. S., Lockhead E., Maes F. W. Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6136–6140. doi: 10.1073/pnas.80.19.6136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spring K. R., Ericson A. C. Epithelial cell volume modulation and regulation. J Membr Biol. 1982;69(3):167–176. doi: 10.1007/BF01870396. [DOI] [PubMed] [Google Scholar]
  22. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES