Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1985 Jun 1;85(6):911–931. doi: 10.1085/jgp.85.6.911

Extracellular K+ activity changes related to electroretinogram components. II. Rabbit (E-type) retinas

PMCID: PMC2215787  PMID: 2410539

Abstract

Electroretinogram (ERG) and extracellular potassium activity (K+o) measurements were carried out in isolated superfused rabbit eyecup preparations under control conditions and during the application of pharmacological agents that selectively modify the light-responsive retinal network. Light-evoked K+o changes in the rabbit (E-type) retina resemble those previously described in amphibian (I-type) retinas. Different components of the light-evoked K+o changes can be distinguished on the bases of retinal depth, V vs. log I properties, and their responses to pharmacological agents. We find two separable sources of light-evoked increases in extracellular K+: a proximal source and a distal source. The properties of the distal light-evoked K+o increase are consistent with the hypothesis that it initiates a K+- mediated current through Muller cells that is detected as the primary voltage of the electroretinographic b-wave. These experiments also support previous studies indicating that both the corneal-positive component of c-wave and the corneal-negative slow PIII potential result from K+-mediated influences on, respectively, the retinal pigment epithelium and Muller cells.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN K. T., WIESEL T. N. Analysis of the intraretinal electroretinogram in the intact cat eye. J Physiol. 1961 Sep;158:229–256. doi: 10.1113/jphysiol.1961.sp006767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dick E., Miller R. F. Extracellular K+ activity changes related to electroretinogram components. I. Amphibian (I-type) retinas. J Gen Physiol. 1985 Jun;85(6):885–909. doi: 10.1085/jgp.85.6.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dick E., Miller R. F. Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram. Brain Res. 1978 Oct 13;154(2):388–394. doi: 10.1016/0006-8993(78)90711-4. [DOI] [PubMed] [Google Scholar]
  4. Granit R. Two types of retinae and their electrical responses to intermittent stimuli in light and dark adaptation. J Physiol. 1935 Dec 16;85(4):421–438. doi: 10.1113/jphysiol.1935.sp003329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Henkind P. The retinal vascular system of the domestic cat. Exp Eye Res. 1966 Jan;5(1):10–20. doi: 10.1016/s0014-4835(66)80015-5. [DOI] [PubMed] [Google Scholar]
  6. Karowski C. J., Proenza L. M. Relationship between Müller cell responses, a local transretinal potential, and potassium flux. J Neurophysiol. 1977 Mar;40(2):244–259. doi: 10.1152/jn.1977.40.2.244. [DOI] [PubMed] [Google Scholar]
  7. Karwoski C. J., Proenza L. M. Light-evoked changes in extracellular potassium concentration in munpuppy retina. Brain Res. 1978 Mar 10;142(3):515–530. doi: 10.1016/0006-8993(78)90913-7. [DOI] [PubMed] [Google Scholar]
  8. Karwoski C. J., Proenza L. M. Neurons, potassium, and glia in proximal retina of Necturus. J Gen Physiol. 1980 Feb;75(2):141–162. doi: 10.1085/jgp.75.2.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Karwoski J., Criswell M. H., Proenza L. M. Laminar separation of light-evoked K+ flux and field potentials in frog retina. Invest Ophthalmol Vis Sci. 1978 Jul;17(7):678–682. [PubMed] [Google Scholar]
  10. Kline R. P., Ripps H., Dowling J. E. Generation of b-wave currents in the skate retina. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5727–5731. doi: 10.1073/pnas.75.11.5727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lurie M., Marmor M. F. Similarities between the c-wave and slow PIII in the rabbit eye. Invest Ophthalmol Vis Sci. 1980 Sep;19(9):1113–1117. [PubMed] [Google Scholar]
  12. Masland R. H., Ames A., 3rd Responses to acetylcholine of ganglion cells in an isolated mammalian retina. J Neurophysiol. 1976 Nov;39(6):1220–1235. doi: 10.1152/jn.1976.39.6.1220. [DOI] [PubMed] [Google Scholar]
  13. Masland R. H., Livingstone C. J. Effect of stimulation with light on synthesis and release of acetylcholine by an isolated mammalian retina. J Neurophysiol. 1976 Nov;39(6):1210–1219. doi: 10.1152/jn.1976.39.6.1210. [DOI] [PubMed] [Google Scholar]
  14. Massey S. C., Neal M. J. The light evoked release of acetylcholine from the rabbit retina iN vivo and its inhibition by gamma-aminobutyric acid. J Neurochem. 1979 Apr;32(4):1327–1329. doi: 10.1111/j.1471-4159.1979.tb11062.x. [DOI] [PubMed] [Google Scholar]
  15. Massey S. C., Redburn D. A. A tonic gamma-aminobutyric acid-mediated inhibition of cholinergic amacrine cells in rabbit retina. J Neurosci. 1982 Nov;2(11):1633–1643. doi: 10.1523/JNEUROSCI.02-11-01633.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miller R. F., Dowling J. E. Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J Neurophysiol. 1970 May;33(3):323–341. doi: 10.1152/jn.1970.33.3.323. [DOI] [PubMed] [Google Scholar]
  17. Miller R. F. Role of K + in generation of b-wave of electroretinogram. J Neurophysiol. 1973 Jan;36(1):28–38. doi: 10.1152/jn.1973.36.1.28. [DOI] [PubMed] [Google Scholar]
  18. Newman E. A. B-wave currents in the frog retina. Vision Res. 1979;19(3):227–234. doi: 10.1016/0042-6989(79)90167-6. [DOI] [PubMed] [Google Scholar]
  19. Newman E. A. Current source-density analysis of the b-wave of frog retina. J Neurophysiol. 1980 May;43(5):1355–1366. doi: 10.1152/jn.1980.43.5.1355. [DOI] [PubMed] [Google Scholar]
  20. Newman E. A., Odette L. L. Model of electroretinogram b-wave generation: a test of the K+ hypothesis. J Neurophysiol. 1984 Jan;51(1):164–182. doi: 10.1152/jn.1984.51.1.164. [DOI] [PubMed] [Google Scholar]
  21. Oakley B., 2nd, Green D. G. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol. 1976 Sep;39(5):1117–1133. doi: 10.1152/jn.1976.39.5.1117. [DOI] [PubMed] [Google Scholar]
  22. Oakley B., 2nd Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization. J Gen Physiol. 1977 Oct;70(4):405–425. doi: 10.1085/jgp.70.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Olsen J. S., Miller R. F. Spontaneous slow potentials and spreading depression in amphibian retina. J Neurophysiol. 1977 Jul;40(4):752–767. doi: 10.1152/jn.1977.40.4.752. [DOI] [PubMed] [Google Scholar]
  24. Rager G. The cellular origin of the b-wave in the electroretinogram -- a developmental approach. J Comp Neurol. 1979 Nov 15;188(2):225–244. doi: 10.1002/cne.901880203. [DOI] [PubMed] [Google Scholar]
  25. Schmidt R., Steinberg R. H. Rod-dependent intracellular responses to light recorded from the pigment epithelium of the cat retina. J Physiol. 1971 Aug;217(1):71–91. doi: 10.1113/jphysiol.1971.sp009560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shimazaki H., Karwoski C. J., Proenza L. M. Aspartate-induced dissociation of proximal from distal retinal activity in the mudpuppy. Vision Res. 1984;24(6):587–595. doi: 10.1016/0042-6989(84)90113-5. [DOI] [PubMed] [Google Scholar]
  27. Steinberg R. H. Incremental responses to light recorded from pigment epithelial cells and horizontal cells of the cat retina. J Physiol. 1971 Aug;217(1):93–110. doi: 10.1113/jphysiol.1971.sp009561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Steinberg R. H., Miller S. Aspects of electrolyte transport in frog pigment epithelium. Exp Eye Res. 1973 Aug 24;16(5):365–372. doi: 10.1016/0014-4835(73)90130-9. [DOI] [PubMed] [Google Scholar]
  29. Steinberg R. H., Oakley B., 2nd, Niemeyer G. Light-evoked changes in [K+]0 in retina of intact cat eye. J Neurophysiol. 1980 Nov;44(5):897–921. doi: 10.1152/jn.1980.44.5.897. [DOI] [PubMed] [Google Scholar]
  30. Steinberg R. H., Schmidt R., Brown K. T. Intracellular responses to light from cat pigment epithelium: origin of the electroretinogram c-wave. Nature. 1970 Aug 15;227(5259):728–730. doi: 10.1038/227728a0. [DOI] [PubMed] [Google Scholar]
  31. Tomita T. Electrophysiological studies of retinal cell function. Invest Ophthalmol. 1976 Mar;15(3):171–187. [PubMed] [Google Scholar]
  32. Welinder E., Textorius O., Nilsson S. E. Effects of intravitreally injected DL-alpha-aminoadipic acid on the c-wave of the D.C.-recorded electroretinogram in albino rabbits. Invest Ophthalmol Vis Sci. 1982 Aug;23(2):240–245. [PubMed] [Google Scholar]
  33. Witkovsky P., Dudek F. E., Ripps H. Slow PIII component of the carp electroretinogram. J Gen Physiol. 1975 Feb;65(2):119–134. doi: 10.1085/jgp.65.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yanagida T., Tomita T. Local potassium concentration changes in the retina and the electroretinographic (ERG) b-wave. Brain Res. 1982 Apr 15;237(2):479–483. doi: 10.1016/0006-8993(82)90459-0. [DOI] [PubMed] [Google Scholar]
  35. Zuckerman R. Ionic analysis of photoreceptor membrane currents. J Physiol. 1973 Dec;235(2):333–354. doi: 10.1113/jphysiol.1973.sp010390. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES