Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1992 Feb 1;99(2):241–262. doi: 10.1085/jgp.99.2.241

Electrophysiological effects of basolateral [Na+] in Necturus gallbladder epithelium

PMCID: PMC2216613  PMID: 1613485

Abstract

In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenberg G., Copello J., Cotton C., Dawson K., Segal Y., Wehner F., Reuss L. Electrophysiological methods for studying ion and water transport in Necturus gall bladder epithelium. Methods Enzymol. 1990;192:650–683. doi: 10.1016/0076-6879(90)92101-i. [DOI] [PubMed] [Google Scholar]
  2. Baerentsen H. J., Christensen O., Thomsen P. G., Zeuthen T. Steady states and the effects of ouabain in the Necturus gallbladder epithelium: a model analysis. J Membr Biol. 1982;68(3):215–225. doi: 10.1007/BF01872266. [DOI] [PubMed] [Google Scholar]
  3. Bello-Reuss E., Grady T. P., Reuss L. Mechanism of the effect of cyanide on cell membrane potentials in Necturus gall-bladder epithelium. J Physiol. 1981 May;314:343–357. doi: 10.1113/jphysiol.1981.sp013712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chase H. S., Jr Does calcium couple the apical and basolateral membrane permeabilities in epithelia? Am J Physiol. 1984 Dec;247(6 Pt 2):F869–F876. doi: 10.1152/ajprenal.1984.247.6.F869. [DOI] [PubMed] [Google Scholar]
  5. Copello J., Segal Y., Reuss L. Cytosolic pH regulates maxi K+ channels in Necturus gall-bladder epithelial cells. J Physiol. 1991 Mar;434:577–590. doi: 10.1113/jphysiol.1991.sp018487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corcia A., Armstrong W. M. KCl cotransport: a mechanism for basolateral chloride exit in Necturus gallbladder. J Membr Biol. 1983;76(2):173–182. doi: 10.1007/BF02000617. [DOI] [PubMed] [Google Scholar]
  7. Eaton D. C., Hamilton K. L., Johnson K. E. Intracellular acidosis blocks the basolateral Na-K pump in rabbit urinary bladder. Am J Physiol. 1984 Dec;247(6 Pt 2):F946–F954. doi: 10.1152/ajprenal.1984.247.6.F946. [DOI] [PubMed] [Google Scholar]
  8. Ericson A. C., Spring K. R. Coupled NaCl entry into Necturus gallbladder epithelial cells. Am J Physiol. 1982 Sep;243(3):C140–C145. doi: 10.1152/ajpcell.1982.243.3.C140. [DOI] [PubMed] [Google Scholar]
  9. Fain G. L., Farahbakhsh N. A. Voltage-activated currents recorded from rabbit pigmented ciliary body epithelial cells in culture. J Physiol. 1989 Nov;418:83–103. doi: 10.1113/jphysiol.1989.sp017829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. García-Díaz J. F., Nagel W., Essig A. Voltage-dependent K conductance at the apical membrane of Necturus gallbladder. Biophys J. 1983 Sep;43(3):269–278. doi: 10.1016/S0006-3495(83)84350-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garrahan P. J., Glynn I. M. The sensitivity of the sodium pump to external sodium. J Physiol. 1967 Sep;192(1):175–188. doi: 10.1113/jphysiol.1967.sp008295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graessmann M., Graessmann A. Microinjection of tissue culture cells. Methods Enzymol. 1983;101:482–492. doi: 10.1016/0076-6879(83)01033-2. [DOI] [PubMed] [Google Scholar]
  13. Grinstein S., Erlij D. Intracellular calcium and the regulation of sodium transport in the frog skin. Proc R Soc Lond B Biol Sci. 1978 Jul 26;202(1148):353–360. doi: 10.1098/rspb.1978.0072. [DOI] [PubMed] [Google Scholar]
  14. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  15. Harrison S. M., Bers D. M. The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA. Biochim Biophys Acta. 1987 Aug 13;925(2):133–143. doi: 10.1016/0304-4165(87)90102-4. [DOI] [PubMed] [Google Scholar]
  16. Lorenzen M., Lee C. O., Windhager E. E. Cytosolic Ca2+ and Na+ activities in perfused proximal tubules of Necturus kidney. Am J Physiol. 1984 Jul;247(1 Pt 2):F93–102. doi: 10.1152/ajprenal.1984.247.1.F93. [DOI] [PubMed] [Google Scholar]
  17. Nakao M., Gadsby D. C. [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J Gen Physiol. 1989 Sep;94(3):539–565. doi: 10.1085/jgp.94.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oberleithner H., Kersting U., Hunter M. Cytoplasmic pH determines K+ conductance in fused renal epithelial cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8345–8349. doi: 10.1073/pnas.85.21.8345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Palant C. E., Kurtz I. Measurement of intracellular Ca2+ activity in Necturus gallbladder. Am J Physiol. 1987 Aug;253(2 Pt 1):C309–C315. doi: 10.1152/ajpcell.1987.253.2.C309. [DOI] [PubMed] [Google Scholar]
  20. Petersen K. U., Reuss L. Electrophysiological effects of propionate and bicarbonate on gallbladder epithelium. Am J Physiol. 1985 Jan;248(1 Pt 1):C58–C69. doi: 10.1152/ajpcell.1985.248.1.C58. [DOI] [PubMed] [Google Scholar]
  21. Reuss L. Basolateral KCl co-transport in a NaCl-absorbing epithelium. Nature. 1983 Oct 20;305(5936):723–726. doi: 10.1038/305723a0. [DOI] [PubMed] [Google Scholar]
  22. Reuss L., Bello-Reuss E., Grady T. P. Effects of ouabain on fluid transport and electrical properties of Necturus gallbladder. Evidence in favor of a neutral basolateral sodium transport mechanism. J Gen Physiol. 1979 Apr;73(4):385–402. doi: 10.1085/jgp.73.4.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions. J Membr Biol. 1975 Dec 4;25(1-2):115–139. doi: 10.1007/BF01868571. [DOI] [PubMed] [Google Scholar]
  24. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. II. Ionic permeability of the apical cell membrane. J Membr Biol. 1975 Dec 4;25(1-2):141–161. doi: 10.1007/BF01868572. [DOI] [PubMed] [Google Scholar]
  25. Reuss L. Ion transport across gallbladder epithelium. Physiol Rev. 1989 Apr;69(2):503–545. doi: 10.1152/physrev.1989.69.2.503. [DOI] [PubMed] [Google Scholar]
  26. Reuss L., Weinman S. A. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium. J Membr Biol. 1979 Sep 14;49(4):345–362. doi: 10.1007/BF01868991. [DOI] [PubMed] [Google Scholar]
  27. Rink T. J. Measurement of cytosolic calcium: fluorescent calcium indicators. Miner Electrolyte Metab. 1988;14(1):7–14. [PubMed] [Google Scholar]
  28. Rose R. C., Nahrwold D. L. Electrolyte transport in Necturus gallbladder: the role of rheogenic Na transport. Am J Physiol. 1980 Apr;238(4):G358–G365. doi: 10.1152/ajpgi.1980.238.4.G358. [DOI] [PubMed] [Google Scholar]
  29. Segal Y., Reuss L. Ba2+, TEA+, and quinine effects on apical membrane K+ conductance and maxi K+ channels in gallbladder epithelium. Am J Physiol. 1990 Jul;259(1 Pt 1):C56–C68. doi: 10.1152/ajpcell.1990.259.1.C56. [DOI] [PubMed] [Google Scholar]
  30. Segal Y., Reuss L. Maxi K+ channels and their relationship to the apical membrane conductance in Necturus gallbladder epithelium. J Gen Physiol. 1990 May;95(5):791–818. doi: 10.1085/jgp.95.5.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith J. B., Dwyer S. D., Smith L. Decreasing extracellular Na+ concentration triggers inositol polyphosphate production and Ca2+ mobilization. J Biol Chem. 1989 Jan 15;264(2):831–837. [PubMed] [Google Scholar]
  32. Stoddard J. S., Altenberg G. A., Ferguson M. L., Reuss L. Furosemide blocks basolateral membrane Cl- permeability in gallbladder epithelium. Am J Physiol. 1990 Jun;258(6 Pt 1):C1150–C1158. doi: 10.1152/ajpcell.1990.258.6.C1150. [DOI] [PubMed] [Google Scholar]
  33. Stoddard J. S., Reuss L. Dependence of cell membrane conductances on bathing solution HCO3-/CO2 in Necturus gallbladder. J Membr Biol. 1988 May;102(2):163–174. doi: 10.1007/BF01870454. [DOI] [PubMed] [Google Scholar]
  34. Stoddard J. S., Reuss L. Electrophysiological effects of mucosal Cl- removal in Necturus gallbladder epithelium. Am J Physiol. 1989 Sep;257(3 Pt 1):C568–C578. doi: 10.1152/ajpcell.1989.257.3.C568. [DOI] [PubMed] [Google Scholar]
  35. Stoddard J. S., Reuss L. Voltage- and time dependence of apical membrane conductance during current clamp in Necturus gallbladder epithelium. J Membr Biol. 1988 Jul;103(2):191–204. doi: 10.1007/BF01870949. [DOI] [PubMed] [Google Scholar]
  36. Stoddard J. S., Reuss L. pH effects on basolateral membrane ion conductances in gallbladder epithelium. Am J Physiol. 1989 Jun;256(6 Pt 1):C1184–C1195. doi: 10.1152/ajpcell.1989.256.6.C1184. [DOI] [PubMed] [Google Scholar]
  37. Tsien R. Y., Rink T. J. Ca2+-selective electrodes: a novel PVC-gelled neutral carrier mixture compared with other currently available sensors. J Neurosci Methods. 1981 Jun;4(1):73–86. doi: 10.1016/0165-0270(81)90020-0. [DOI] [PubMed] [Google Scholar]
  38. Weinman S. A., Reuss L. Na+-H+ exchange and Na+ entry across the apical membrane of Necturus gallbladder. J Gen Physiol. 1984 Jan;83(1):57–74. doi: 10.1085/jgp.83.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Weinman S. A., Reuss L. Na+-H+ exchange at the apical membrane of Necturus gallbladder. Extracellular and intracellular pH studies. J Gen Physiol. 1982 Aug;80(2):299–321. doi: 10.1085/jgp.80.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weiss D. S., Magleby K. L. Voltage dependence and stability of the gating kinetics of the fast chloride channel from rat skeletal muscle. J Physiol. 1990 Jul;426:145–176. doi: 10.1113/jphysiol.1990.sp018131. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES