Abstract
K-Cl cotransport in LK sheep erythrocytes is activated by osmotic swelling and inhibited by shrinkage. The mechanism by which changes in cell volume are transduced into changes in transport was investigated by measuring time courses of changes in transport after osmotic challenges in cells with normal and reduced Mg concentrations. When cells of normal volume and normal Mg are swollen, there is a delay of 10 min or more before the final steady-state flux is achieved, as there is for swelling activation of K-Cl cotransport in erythrocytes of other species. The delay was shown to be independent of the extent of swelling. There was also a delay after shrinkage inactivation of cotransport. Reducing cellular Mg concentration activates cotransport. Swelling of low-Mg cells activates cotransport further, but with no measurable delay. In contrast, there is a delay in shrinkage inactivation of cotransport in low-Mg cells. The results are interpreted in terms of a three-state model: [formula see text] in which A state, B state, and C state transporters have relatively slow, intermediate, and fast transport rates, respectively. Most transporters in shrunken cells with normal Mg are in the A state. Swelling converts transporters to the B state in the rate-limiting process, followed by rapid conversion to the C state. Reducing cell Mg also promotes the A-- >B conversion. Swelling of low-Mg cells activates transport rapidly because of the initial predominance of B state transporters. The results support the following conclusions about the rate constants of the three-state model: k21 is the rate constant for a Mg-promoted process that is inhibited by swelling; k12 is not volume sensitive. Both k23 and k32 are increased by swelling and reduced by shrinkage; they are rate constants for a single process, whereas k12 and k21 are rate constants for separate processes. Finally, the A-->B conversion entails an increase in Jmax of the transporters, and the B-->C conversion entails an increase in the affinity of the transporters for K.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bergh C., Kelley S. J., Dunham P. B. K-Cl cotransport in LK sheep erythrocytes: kinetics of stimulation by cell swelling. J Membr Biol. 1990 Aug;117(2):177–188. doi: 10.1007/BF01868684. [DOI] [PubMed] [Google Scholar]
- Berkowitz L. R., Orringer E. P. Cell volume regulation in hemoglobin CC and AA erythrocytes. Am J Physiol. 1987 Mar;252(3 Pt 1):C300–C306. doi: 10.1152/ajpcell.1987.252.3.C300. [DOI] [PubMed] [Google Scholar]
- Breitwieser G. E., Altamirano A. A., Russell J. M. Osmotic stimulation of Na(+)-K(+)-Cl- cotransport in squid giant axon is [Cl-]i dependent. Am J Physiol. 1990 Apr;258(4 Pt 1):C749–C753. doi: 10.1152/ajpcell.1990.258.4.C749. [DOI] [PubMed] [Google Scholar]
- Brugnara C., Bunn H. F., Tosteson D. C. Regulation of erythrocyte cation and water content in sickle cell anemia. Science. 1986 Apr 18;232(4748):388–390. doi: 10.1126/science.3961486. [DOI] [PubMed] [Google Scholar]
- Brugnara C., Kopin A. S., Bunn H. F., Tosteson D. C. Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease. J Clin Invest. 1985 May;75(5):1608–1617. doi: 10.1172/JCI111867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brugnara C., Tosteson D. C. Cell volume, K transport, and cell density in human erythrocytes. Am J Physiol. 1987 Mar;252(3 Pt 1):C269–C276. doi: 10.1152/ajpcell.1987.252.3.C269. [DOI] [PubMed] [Google Scholar]
- Brugnara C., Van Ha T., Tosteson D. C. Properties of K+ transport in resealed human erythrocyte ghosts. Am J Physiol. 1988 Sep;255(3 Pt 1):C346–C356. doi: 10.1152/ajpcell.1988.255.3.C346. [DOI] [PubMed] [Google Scholar]
- Brugnara C., Van Ha T., Tosteson D. C. Role of chloride in potassium transport through a K-Cl cotransport system in human red blood cells. Am J Physiol. 1989 May;256(5 Pt 1):C994–1003. doi: 10.1152/ajpcell.1989.256.5.C994. [DOI] [PubMed] [Google Scholar]
- Cahalan M. D., Lewis R. S. Role of potassium and chloride channels in volume regulation by T lymphocytes. Soc Gen Physiol Ser. 1988;43:281–301. [PubMed] [Google Scholar]
- Canessa M., Fabry M. E., Blumenfeld N., Nagel R. L. Volume-stimulated, Cl(-)-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J Membr Biol. 1987;97(2):97–105. doi: 10.1007/BF01869416. [DOI] [PubMed] [Google Scholar]
- Colclasure G. C., Parker J. C. Cytosolic protein concentration is the primary volume signal for swelling-induced [K-Cl] cotransport in dog red cells. J Gen Physiol. 1992 Jul;100(1):1–10. doi: 10.1085/jgp.100.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corcia A., Armstrong W. M. KCl cotransport: a mechanism for basolateral chloride exit in Necturus gallbladder. J Membr Biol. 1983;76(2):173–182. doi: 10.1007/BF02000617. [DOI] [PubMed] [Google Scholar]
- Delpire E., Lauf P. K. Magnesium and ATP dependence of K-Cl co-transport in low K+ sheep red blood cells. J Physiol. 1991 Sep;441:219–231. doi: 10.1113/jphysiol.1991.sp018747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duhm J. Furosemide-sensitive K+ (Rb+) transport in human erythrocytes: modes of operation, dependence on extracellular and intracellular Na+, kinetics, pH dependency and the effect of cell volume and N-ethylmaleimide. J Membr Biol. 1987;98(1):15–32. doi: 10.1007/BF01871042. [DOI] [PubMed] [Google Scholar]
- Dunham P. B., Ellory J. C. Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride. J Physiol. 1981 Sep;318:511–530. doi: 10.1113/jphysiol.1981.sp013881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunham P. B., Hoffman J. F. Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep. J Gen Physiol. 1971 Jul;58(1):94–116. doi: 10.1085/jgp.58.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunham P. B. Ion transport in sheep red blood cells. Comp Biochem Physiol Comp Physiol. 1992 Aug;102(4):625–630. doi: 10.1016/0300-9629(92)90715-3. [DOI] [PubMed] [Google Scholar]
- Dunham P. B., Logue P. J. Potassium-chloride cotransport in resealed human red cell ghosts. Am J Physiol. 1986 Apr;250(4 Pt 1):C578–C583. doi: 10.1152/ajpcell.1986.250.4.C578. [DOI] [PubMed] [Google Scholar]
- Freedman J. C., Hoffman J. F. Ionic and osmotic equilibria of human red blood cells treated with nystatin. J Gen Physiol. 1979 Aug;74(2):157–185. doi: 10.1085/jgp.74.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garay R. P., Nazaret C., Hannaert P. A., Cragoe E. J., Jr Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl-]-cotransport system. Mol Pharmacol. 1988 Jun;33(6):696–701. [PubMed] [Google Scholar]
- Greger R., Schlatter E. Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch. 1983 Mar;396(4):325–334. doi: 10.1007/BF01063938. [DOI] [PubMed] [Google Scholar]
- Guggino W. B. Functional heterogeneity in the early distal tubule of the Amphiuma kidney: evidence for two modes of Cl- and K+ transport across the basolateral cell membrane. Am J Physiol. 1986 Mar;250(3 Pt 2):F430–F440. doi: 10.1152/ajprenal.1986.250.3.F430. [DOI] [PubMed] [Google Scholar]
- Hall A. C., Ellory J. C. Evidence for the presence of volume-sensitive KCl transport in 'young' human red cells. Biochim Biophys Acta. 1986 Jun 26;858(2):317–320. doi: 10.1016/0005-2736(86)90338-x. [DOI] [PubMed] [Google Scholar]
- Hoffmann E. K., Simonsen L. O. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989 Apr;69(2):315–382. doi: 10.1152/physrev.1989.69.2.315. [DOI] [PubMed] [Google Scholar]
- Jennings M. L., Schulz R. K. Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N-ethylmaleimide. J Gen Physiol. 1991 Apr;97(4):799–817. doi: 10.1085/jgp.97.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings M. L., Schulz R. K. Swelling-activated KCl cotransport in rabbit red cells: flux is determined mainly by cell volume rather than shape. Am J Physiol. 1990 Dec;259(6 Pt 1):C960–C967. doi: 10.1152/ajpcell.1990.259.6.C960. [DOI] [PubMed] [Google Scholar]
- Jennings M. L., al-Rohil N. Kinetics of activation and inactivation of swelling-stimulated K+/Cl- transport. The volume-sensitive parameter is the rate constant for inactivation. J Gen Physiol. 1990 Jun;95(6):1021–1040. doi: 10.1085/jgp.95.6.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaji D. M. Effect of membrane potential on K-Cl transport in human erythrocytes. Am J Physiol. 1993 Feb;264(2 Pt 1):C376–C382. doi: 10.1152/ajpcell.1993.264.2.C376. [DOI] [PubMed] [Google Scholar]
- Kaji D. Volume-sensitive K transport in human erythrocytes. J Gen Physiol. 1986 Dec;88(6):719–738. doi: 10.1085/jgp.88.6.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim H. D., Sergeant S., Forte L. R., Sohn D. H., Im J. H. Activation of a Cl-dependent K flux by cAMP in pig red cells. Am J Physiol. 1989 Apr;256(4 Pt 1):C772–C778. doi: 10.1152/ajpcell.1989.256.4.C772. [DOI] [PubMed] [Google Scholar]
- Kracke G. R., Dunham P. B. Volume-sensitive K-Cl cotransport in inside-out vesicles made from erythrocyte membranes from sheep of low-K phenotype. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8575–8579. doi: 10.1073/pnas.87.21.8575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kregenow F. M. Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media. Annu Rev Physiol. 1981;43:493–505. doi: 10.1146/annurev.ph.43.030181.002425. [DOI] [PubMed] [Google Scholar]
- Kregenow F. M. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism. J Gen Physiol. 1971 Oct;58(4):372–395. doi: 10.1085/jgp.58.4.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larson M., Spring K. R. Volume regulation by Necturus gallbladder: basolateral KCl exit. J Membr Biol. 1984;81(3):219–232. doi: 10.1007/BF01868715. [DOI] [PubMed] [Google Scholar]
- Lauf P. K., Bauer J., Adragna N. C., Fujise H., Zade-Oppen A. M., Ryu K. H., Delpire E. Erythrocyte K-Cl cotransport: properties and regulation. Am J Physiol. 1992 Nov;263(5 Pt 1):C917–C932. doi: 10.1152/ajpcell.1992.263.5.C917. [DOI] [PubMed] [Google Scholar]
- Lauf P. K., Bauer J. Direct evidence for chloride-dependent volume reduction in macrocytic sheep reticulocytes. Biochem Biophys Res Commun. 1987 Apr 29;144(2):849–855. doi: 10.1016/s0006-291x(87)80042-6. [DOI] [PubMed] [Google Scholar]
- Lauf P. K. Passive K+-Cl- fluxes in low-K+ sheep erythrocytes: modulation by A23187 and bivalent cations. Am J Physiol. 1985 Sep;249(3 Pt 1):C271–C278. doi: 10.1152/ajpcell.1985.249.3.C271. [DOI] [PubMed] [Google Scholar]
- Lauf P. K. Thiol-dependent K:Cl transport in sheep red cells: VIII. Activation through metabolically and chemically reversible oxidation by diamide. J Membr Biol. 1988;101(2):179–188. doi: 10.1007/BF01872833. [DOI] [PubMed] [Google Scholar]
- Lohr J. W., Grantham J. J. Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. J Clin Invest. 1986 Nov;78(5):1165–1172. doi: 10.1172/JCI112698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moronne M. M., Mehlhorn R. J., Miller M. P., Ackerson L. C., Macey R. I. ESR measurement of time-dependent and equilibrium volumes in red cells. J Membr Biol. 1990 Apr;115(1):31–40. doi: 10.1007/BF01869103. [DOI] [PubMed] [Google Scholar]
- Motulsky H. J., Ransnas L. A. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987 Nov;1(5):365–374. [PubMed] [Google Scholar]
- O'Neill W. C. Cl-dependent K transport in a pure population of volume-regulating human erythrocytes. Am J Physiol. 1989 Apr;256(4 Pt 1):C858–C864. doi: 10.1152/ajpcell.1989.256.4.C858. [DOI] [PubMed] [Google Scholar]
- O'Neill W. C. Volume-sensitive, Cl-dependent K transport in resealed human erythrocyte ghosts. Am J Physiol. 1989 Jan;256(1 Pt 1):C81–C88. doi: 10.1152/ajpcell.1989.256.1.C81. [DOI] [PubMed] [Google Scholar]
- Olivieri O., Vitoux D., Galacteros F., Bachir D., Blouquit Y., Beuzard Y., Brugnara C. Hemoglobin variants and activity of the (K+Cl-) cotransport system in human erythrocytes. Blood. 1992 Feb 1;79(3):793–797. [PubMed] [Google Scholar]
- Parker J. C., Colclasure G. C., McManus T. J. Coordinated regulation of shrinkage-induced Na/H exchange and swelling-induced [K-Cl] cotransport in dog red cells. Further evidence from activation kinetics and phosphatase inhibition. J Gen Physiol. 1991 Nov;98(5):869–880. doi: 10.1085/jgp.98.5.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker J. C., McManus T. J., Starke L. C., Gitelman H. J. Coordinated regulation of Na/H exchange and [K-Cl] cotransport in dog red cells. J Gen Physiol. 1990 Dec;96(6):1141–1152. doi: 10.1085/jgp.96.6.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuss L. Basolateral KCl co-transport in a NaCl-absorbing epithelium. Nature. 1983 Oct 20;305(5936):723–726. doi: 10.1038/305723a0. [DOI] [PubMed] [Google Scholar]
- Sachs J. R., Ellory J. C., Kropp D. L., Dunham P. B., Hoffman J. F. Antibody-induced alterations in the kinetic characteristics of the Na:K pump in goat red blood cells. J Gen Physiol. 1974 Apr;63(4):389–414. doi: 10.1085/jgp.63.4.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R. Volume-sensitive K influx in human red cell ghosts. J Gen Physiol. 1988 Nov;92(5):685–711. doi: 10.1085/jgp.92.5.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki S., Ishibashi K., Yoshiyama N., Shiigai T. KCl co-transport across the basolateral membrane of rabbit renal proximal straight tubules. J Clin Invest. 1988 Jan;81(1):194–199. doi: 10.1172/JCI113294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siebens A. W., Kregenow F. M. Volume-regulatory responses of Amphiuma red cells in anisotonic media. The effect of amiloride. J Gen Physiol. 1985 Oct;86(4):527–564. doi: 10.1085/jgp.86.4.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thornhill W. B., Laris P. C. KCl loss and cell shrinkage in the Ehrlich ascites tumor cell induced by hypotonic media, 2-deoxyglucose and propranolol. Biochim Biophys Acta. 1984 Jun 27;773(2):207–218. doi: 10.1016/0005-2736(84)90084-1. [DOI] [PubMed] [Google Scholar]
- Watson P. A. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 1991 Apr;5(7):2013–2019. doi: 10.1096/fasebj.5.7.1707019. [DOI] [PubMed] [Google Scholar]
- Wiater L. A., Dunham P. B. Passive transport of K+ and Na+ in human red blood cells: sulfhydryl binding agents and furosemide. Am J Physiol. 1983 Nov;245(5 Pt 1):C348–C356. doi: 10.1152/ajpcell.1983.245.5.C348. [DOI] [PubMed] [Google Scholar]
- Zade-Oppen A. M., Lauf P. K. Thiol-dependent passive K: Cl transport in sheep red blood cells: IX. Modulation by pH in the presence and absence of DIDS and the effect of NEM. J Membr Biol. 1990 Nov;118(2):143–151. doi: 10.1007/BF01868471. [DOI] [PubMed] [Google Scholar]
- Zeuthen T. Secondary active transport of water across ventricular cell membrane of choroid plexus epithelium of Necturus maculosus. J Physiol. 1991 Dec;444:153–173. doi: 10.1113/jphysiol.1991.sp018871. [DOI] [PMC free article] [PubMed] [Google Scholar]