Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Nov;132(2):505–510. doi: 10.1128/jb.132.2.505-510.1977

Regulation of superoxide dismutase synthesis in Escherichia coli: glucose effect.

H Moustafa Hassan, I Fridovich
PMCID: PMC221889  PMID: 21164

Abstract

Growth of Escherichia coli, based upon the fermentation of glucose, is associated with a low intracellular level of superoxide dismutase. Exhaustion of glucose, or depression of the pH due to accumulation of organic acids, causes these organisms to then obtain energy from the oxidative degradation of other substances present in a rich medium. This shift in metabolism is associated with a marked increase in the rate of synthesis of superoxide dismutase. Depression of the synthesis of superoxide dismutase by glucose is not due to catabolite repression since it is not eliminated by cyclic adenosine 3',5'-monophosphate and since alpha-methyl glucoside does not mimic the effect of glucose. Moreover, glucose itself no longer depresses superoxide dismutase synthesis when the pH has fallen low enough to cause a shift to a non-fermentative metabolism. It appears likely that superoxide dismutase is controlled directly or indirectly by the intracellular level of O2- and that glucose depressed the level of this enzyme because glucose metabolism is not associated with as rapid a production of O2- as is the metabolsim of many other substances. In accord with this view is the observation that paraquat, which can increase the rate of production of O2- by redox cycling, caused a rapid and marked increase in superoxide dismutase.

Full text

PDF
507

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bus J. S., Cagen S. Z., Olgaard M., Gibson J. E. A mechanism of paraquat toxicity in mice and rats. Toxicol Appl Pharmacol. 1976 Mar;35(3):501–513. doi: 10.1016/0041-008x(76)90073-9. [DOI] [PubMed] [Google Scholar]
  2. De Crombrugghe B., Perlman R. L., Varmus H. E., Pastan I. Regulation of inducible enzyme synthesis in Escherichia coli by cyclic adenosine 3', 5'-monophosphate. J Biol Chem. 1969 Nov 10;244(21):5828–5835. [PubMed] [Google Scholar]
  3. Doelle H. W., Hollywood N., Westwood A. W. Effect of glucose concentration on a number of enzymes involved in the aerobic and anaerobic utilization of glucose in turbidostat-cultures of Escherichia coli. Microbios. 1974 Mar-Apr;9(36):221–232. [PubMed] [Google Scholar]
  4. Fridovich I. Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):35–97. doi: 10.1002/9780470122860.ch2. [DOI] [PubMed] [Google Scholar]
  5. Fridovich I. Superoxide dismutases. Annu Rev Biochem. 1975;44:147–159. doi: 10.1146/annurev.bi.44.070175.001051. [DOI] [PubMed] [Google Scholar]
  6. Gray C. T., Wimpenny J. W., Mossman M. R. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli. Biochim Biophys Acta. 1966 Mar 28;117(1):33–41. doi: 10.1016/0304-4165(66)90149-8. [DOI] [PubMed] [Google Scholar]
  7. Hassan H. M., Fridovich I. Enzymatic defenses against the toxicity of oxygen and of streptonigrin in Escherichia coli. J Bacteriol. 1977 Mar;129(3):1574–1583. doi: 10.1128/jb.129.3.1574-1583.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hassan H. M., Fridovich I. Physiological function of superoxide dismutase in glucose-limited chemostat cultures of Escherichia coli. J Bacteriol. 1977 May;130(2):805–811. doi: 10.1128/jb.130.2.805-811.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hempfling W. P. Repression of oxidative phosphorylation in Escherichia coli B by growth in glucose and other carbohydrates. Biochem Biophys Res Commun. 1970 Oct 9;41(1):9–15. doi: 10.1016/0006-291x(70)90461-4. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. MAKMAN R. S., SUTHERLAND E. W. ADENOSINE 3',5'-PHOSPHATE IN ESCHERICHIA COLI. J Biol Chem. 1965 Mar;240:1309–1314. [PubMed] [Google Scholar]
  12. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  13. Perlman R. L., Pastan I. Regulation of beta-galactosidase synthesis in Escherichia coli by cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1968 Oct 25;243(20):5420–5427. [PubMed] [Google Scholar]
  14. Peterkofsky A., Gazdar C. Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2324–2328. doi: 10.1073/pnas.71.6.2324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stancliffe T. C., Pirie A. The production of superoxide radicals in reactions of the herbicide diquat. FEBS Lett. 1971 Oct 1;17(2):297–299. doi: 10.1016/0014-5793(71)80168-0. [DOI] [PubMed] [Google Scholar]
  16. Ullmann A., Monod J. Cyclic AMP as an antagonist of catabolite repression in Escherichia coli. FEBS Lett. 1968 Nov;2(1):57–60. doi: 10.1016/0014-5793(68)80100-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES