Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1963 Nov;50(5):955–962. doi: 10.1073/pnas.50.5.955

ANTIBIOTIC GLYCOSIDES, IV. STUDIES ON THE MECHANISM OF ERYTHROMYCIN RESISTANCE IN BACILLUS SUBTILIS*

Sheldon B Taubman 1,2,, Frank E Young 1,2,, John W Corcoran 1,2,§
PMCID: PMC221955  PMID: 14082362

Full text

PDF
958

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROCK T. D., BROCK M. L. Similarity in mode of action of chloramphenicol and erythromycin. Biochim Biophys Acta. 1959 May;33(1):274–275. doi: 10.1016/0006-3002(59)90535-9. [DOI] [PubMed] [Google Scholar]
  2. Bondi A., Dietz C. C. The Susceptibility of Penicillinase-producing Bacteria to Penicillin: I. Factors Influencing Susceptibility. J Bacteriol. 1948 Jun;55(6):843–847. [PMC free article] [PubMed] [Google Scholar]
  3. HAIGHT T. H., FINLAND M. The antibacterial action of erythromycin. Proc Soc Exp Biol Med. 1952 Oct;81(1):175–183. doi: 10.3181/00379727-81-19815. [DOI] [PubMed] [Google Scholar]
  4. KANEDA T., BUTTE J. C., TAUBMAN S. B., CORCORAN J. W. Actinomycete antibiotics. III. The biogenesis of erythronolide, the C-21 branched chain lactone in erythromycin. J Biol Chem. 1962 Feb;237:322–328. [PubMed] [Google Scholar]
  5. KUSHNER D. J. The basis of chloramphenicol resistance in Pseudomonas fluorescens. Arch Biochem Biophys. 1955 Oct;58(2):347–355. doi: 10.1016/0003-9861(55)90134-x. [DOI] [PubMed] [Google Scholar]
  6. LIGHTBOWN J. W. Metabolic processes underlying streptomycin resistance. G Ital Chemioter. 1957 Jan-Jun;4(1-2):22–32. [PubMed] [Google Scholar]
  7. Landy M., Larkum N. W., Oswald E. J., Streightoff F. INCREASED SYNTHESIS OF p-AMINOBENZOIC ACID ASSOCIATED WITH THE DEVELOPMENT OF SULFONAMIDE RESISTANCE IN STAPHYLOCOCCUS AUREUS. Science. 1943 Mar 19;97(2516):265–267. doi: 10.1126/science.97.2516.265. [DOI] [PubMed] [Google Scholar]
  8. MARTINEZ L. M., SAZ A. K. Enzymatic basis of resistance to aureomycin. I. Differences between flavoprotein nitro reductases of sensitive and resistant Escherichia coli. J Biol Chem. 1956 Nov;223(1):285–292. [PubMed] [Google Scholar]
  9. POLLOCK M. R. Drug resistance and mechanisms for its development. Br Med Bull. 1960 Jan;16:16–22. doi: 10.1093/oxfordjournals.bmb.a069785. [DOI] [PubMed] [Google Scholar]
  10. SO A. G., DAVIE E. W. The incorporation of amino acids into protein in a cell-free system from yeast. Biochemistry. 1963 Jan-Feb;2:132–136. doi: 10.1021/bi00901a023. [DOI] [PubMed] [Google Scholar]
  11. Spink W. W., Ferris V. QUANTITATIVE ACTION OF PENICILLIN INHIBITOR FROM PENICILLIN-RESISTANT STRAINS OF STAPHYLOCOCCI. Science. 1945 Aug 31;102(2644):221–223. doi: 10.1126/science.102.2644.221. [DOI] [PubMed] [Google Scholar]
  12. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. YOUNG F. E., SPIZIZEN J. INCORPORATION OF DEOXYRIBONUCLEIC ACID IN THE BACILLUS SUBTILIS TRANSFORMATION SYSTEM. J Bacteriol. 1963 Sep;86:392–400. doi: 10.1128/jb.86.3.392-400.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. YOUNG F. E., SPIZIZEN J. Physiological and genetic factors affecting transformation of Bacillus subtilis. J Bacteriol. 1961 May;81:823–829. doi: 10.1128/jb.81.5.823-829.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES