Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Feb;133(2):558–563. doi: 10.1128/jb.133.2.558-563.1978

Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica.

A Oren, E Padan
PMCID: PMC222058  PMID: 415043

Abstract

Anaerobic photoautotrophic growth of the cyanobacterium Oscillatoria limnetica was demonstrated under nitrogen in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (5micron), a constant concentration of Na2S (2.5 mM), and constant pH (7.3). The photoanaerobic growth rate (2 days doubling time) was similar to that obtained under oxygenic photoautotrophic growth conditions. The potential of oxygenic photosynthesis is constitutive in the cells; that of anoxygenic photosynthesis is rapidly (2 h) induced in the presence of Na2S in the light in a process requiring protein synthesis. The facultative anaerobic phototrophic growth physiology exhibited by O. limnetica would seem to represent an intermediate physiological pattern between the obligate anaerobic one of photosynthetic bacteria and the oxygenic one of eucaryotic algae.

Full text

PDF
562

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COCKING E. C., YEMM E. W. Estimation of amino acids by ninhydrin. Biochem J. 1954 Jun 19;58(330TH):xii–xii. [PubMed] [Google Scholar]
  2. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  3. Cohen Y., Padan E., Shilo M. Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol. 1975 Sep;123(3):855–861. doi: 10.1128/jb.123.3.855-861.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Frenkel A. W. Multiplicity of electron transport reactions in bacterial photosynthesis. Biol Rev Camb Philos Soc. 1970 Nov;45(4):569–616. doi: 10.1111/j.1469-185x.1970.tb01177.x. [DOI] [PubMed] [Google Scholar]
  5. Garlick S., Oren A., Padan E. Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J Bacteriol. 1977 Feb;129(2):623–629. doi: 10.1128/jb.129.2.623-629.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LASCELLES J. Adaptation to form bacteriochlorophyll in Rhodopseudomonas spheroides: changes in activity of enzymes concerned in pyrrole synthesis. Biochem J. 1959 Jul;72:508–518. doi: 10.1042/bj0720508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Oren A., Padan E., Avron M. Quantum yields for oxygenic and anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Proc Natl Acad Sci U S A. 1977 May;74(5):2152–2156. doi: 10.1073/pnas.74.5.2152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stewart W. D., Lex M. Nitrogenase activity in the blue-green alga Plectonema boryanum strain 594. Arch Mikrobiol. 1970;73(3):250–260. doi: 10.1007/BF00410626. [DOI] [PubMed] [Google Scholar]
  10. Weller D., Doemel W., Brock T. D. Requirement of low oxidation-reduction potential for photosynthesis in a blue-green alga (Phormidium sp.). Arch Microbiol. 1975 Jun 20;104(1):7–13. doi: 10.1007/BF00447293. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES