Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Apr;134(1):229–236. doi: 10.1128/jb.134.1.229-236.1978

Superoxide Dismutase and Oxygen Metabolism in Streptococcus faecalis and Comparisons with Other Organisms

Larry Britton 1, Douglas P Malinowski 1, Irwin Fridovich 1
PMCID: PMC222239  PMID: 206536

Abstract

Streptococcus faecalis contains a single superoxide dismutase that has been purified to homogeneity with a 55% yield. This enzyme has a molecular weight of 45,000 and is composed of two subunits of equal size. It contains 1.3 atoms of manganese per molecule. Its amino acid composition was determined and is compared with that for the superoxide dismutases from Escherichia coli, Streptococcus mutans, and Mycobacterium lepraemurium. When used as an antigen in rabbits, the S. faecalis enzyme elicited the formation of a precipitating and inhibiting antibody. This antibody cross-reacted with the superoxide dismutase present in another strain of S. faecalis, but neither inhibited nor precipitated the superoxide dismutases in a wide range of other bacteria, including several other streptococci, such as S. pyogenes, S. pneumoniae, and S. lactis. The inhibiting antibody was used to suppress the superoxide dismutase activity present in cell extracts of S. faecalis and thus allow the demonstration that 17% of the total oxygen consumption by such extracts, in the presence of reduced nicotinamide adenine dinucleotide, was associated with the production of O2. A variety of bacterial species were surveyed for their content of superoxide dismutases. The iron-containing enzyme was distinguished from the manganese-containing enzyme through the use of H2O2, which inactivates the former more readily than the latter. Some of the bacteria appeared to contain only the iron enzyme, others only the manganese enzyme, and still others both. Indeed, some had multiple, electrophoretically distinct superoxide dismutases in both categories. There was no discernible absolute relationship between the types of superoxide dismutases in a particular organism and their Gram-stain reaction.

Full text

PDF
236

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada K., Yoshikawa K., Takahashi M., Maeda Y., Enmanji K. Superoxide dismutases from a blue-green alga, Plectonema boryanum. J Biol Chem. 1975 Apr 25;250(8):2801–2807. [PubMed] [Google Scholar]
  2. Asada K. [Oxygen toxicity (author's transl)]. Seikagaku. 1976;48(4):226–257. [PubMed] [Google Scholar]
  3. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  4. Bielski B. H., Chan P. C. Re-evaluation of the kinetics of lactate dehydrogenase-catalyzed chain oxidation of nicotinamide adenine dinucleotide by superoxide radicals in the presence of ethylenediaminetetraacetate. J Biol Chem. 1976 Jul 10;251(13):3841–3844. [PubMed] [Google Scholar]
  5. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  6. DOLIN M. I. The Streptococcus faecalis oxidases for reduced diphosphopyridine nucleotide. III. Isolation and properties of a flavin peroxidase for reduced diphosphopyridine nucleotide. J Biol Chem. 1957 Mar;225(1):557–573. [PubMed] [Google Scholar]
  7. DOLIN M. I. The oxidation and per-oxidation of DPNH2 in extracts of Streptococcus faecalis, 10C1. Arch Biochem Biophys. 1953 Oct;46(2):483–485. doi: 10.1016/0003-9861(53)90221-5. [DOI] [PubMed] [Google Scholar]
  8. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  9. Fridovich I. Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):35–97. doi: 10.1002/9780470122860.ch2. [DOI] [PubMed] [Google Scholar]
  10. Fridovich I. Superoxide dismutases. Annu Rev Biochem. 1975;44:147–159. doi: 10.1146/annurev.bi.44.070175.001051. [DOI] [PubMed] [Google Scholar]
  11. Fridovich I. Superoxide dismutases: studies of structure and mechanism. Adv Exp Med Biol. 1976;74:530–539. doi: 10.1007/978-1-4684-3270-1_44. [DOI] [PubMed] [Google Scholar]
  12. GUNSALUS I. C., HORECKER B. L., WOOD W. A. Pathways of carbohydrate metabolism in microorganisms. Bacteriol Rev. 1955 Jun;19(2):79–128. doi: 10.1128/br.19.2.79-128.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gregory E. M., Fridovich I. Induction of superoxide dismutase by molecular oxygen. J Bacteriol. 1973 May;114(2):543–548. doi: 10.1128/jb.114.2.543-548.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gregory E. M., Fridovich I. Oxygen toxicity and the superoxide dismutase. J Bacteriol. 1973 Jun;114(3):1193–1197. doi: 10.1128/jb.114.3.1193-1197.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gregory E. M., Goscin S. A., Fridovich I. Superoxide dismutase and oxygen toxicity in a eukaryote. J Bacteriol. 1974 Feb;117(2):456–460. doi: 10.1128/jb.117.2.456-460.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HIRS C. H. The oxidation of ribonuclease with performic acid. J Biol Chem. 1956 Apr;219(2):611–621. [PubMed] [Google Scholar]
  17. Hassan H. M., Fridovich I. Enzymatic defenses against the toxicity of oxygen and of streptonigrin in Escherichia coli. J Bacteriol. 1977 Mar;129(3):1574–1583. doi: 10.1128/jb.129.3.1574-1583.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hassan H. M., Fridovich I. Regulation of the synthesis of superoxide dismutase in Escherichia coli. Induction by methyl viologen. J Biol Chem. 1977 Nov 10;252(21):7667–7672. [PubMed] [Google Scholar]
  19. Ichihara K., Kusunose E., Kusunose M., Mori T. Superoxide dismutase from Mycobacterium lepraemurium. J Biochem. 1977 May;81(5):1427–1433. [PubMed] [Google Scholar]
  20. Keele B. B., Jr, McCord J. M., Fridovich I. Superoxide dismutase from escherichia coli B. A new manganese-containing enzyme. J Biol Chem. 1970 Nov 25;245(22):6176–6181. [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  23. OUCHTERLONY O. Diffusion-in-gel methods for immunological analysis. Prog Allergy. 1958;5:1–78. [PubMed] [Google Scholar]
  24. SEELEY H. W., VANDEMARK P. J. An adaptive peroxidation by Streptococcus faecalis. J Bacteriol. 1951 Jan;61(1):27–35. doi: 10.1128/jb.61.1.27-35.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vance P. G., Keele B. B., Jr, Rajagopalan K. V. Superoxide dismutase from Streptococcus mutans. Isolation and characterization of two forms of the enzyme. J Biol Chem. 1972 Aug 10;247(15):4782–4786. [PubMed] [Google Scholar]
  26. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  27. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
  28. Yost F. J., Jr, Fridovich I. An iron-containing superoxide dismutase from Escherichia coli. J Biol Chem. 1973 Jul 25;248(14):4905–4908. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES