Abstract
NAD(P)H:quinone oxidoreductase (NQO1, EC 1.6.99.2) is an obligate two-electron reductase that can either bioactivate or detoxify quinones and has been proposed to play an important role in chemoprevention. We have previously characterized a homozygous point mutation in the BE human colon carcinoma cell line that leads to a loss of NQO1 activity. Sequence analysis showed that this mutation was at position 609 of the NQO1 cDNA, conferring a proline to serine substitution at position 187 of the NQO1 enzyme. Using polymerase chain reaction (PCR) analysis, we have found that the H596 human non-small-cell lung cancer (NSCLC) cell line has elevated NQO1 mRNA, but no detectable enzyme activity. Sequencing of the coding region of NQO1 from the H596 cells showed the presence of the identical homozygous point mutation present in the BE cell line. Expression and purification of recombinant wild-type and mutant protein from E. coli showed that mutant protein could be detected using immunoblot analysis and had 2% of the enzymatic activity of the wild-type protein. PCR and Northern blot analysis showed moderate to low levels of expression of the correctly sized transcript in the mutant cells. Immunoblot analysis also revealed that recombinant mutant protein was immunoreactive; however, the mutant protein was not detected in the cytosol of either BE or H596 cells, suggesting that the mutant proteins were either not translated or were rapidly degraded. The absence of any detectable, active protein, therefore, appears to be responsible for the lack of NQO1 activity in cells homozygous for the mutation. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis for the mutation at position 609 conducted on 90 human lung tissue samples (45 matched sets of tumour and uninvolved tissue) revealed a 7% incidence of individuals homozygous for the mutation, and 42% heterozygous for the mutation. These data suggest that the mutation at position 609 represents a polymorphism in an important xenobiotic metabolizing enzyme, which has implications for cancer therapy, chemoprevention and chemoprotection.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beall H. D., Mulcahy R. T., Siegel D., Traver R. D., Gibson N. W., Ross D. Metabolism of bioreductive antitumor compounds by purified rat and human DT-diaphorases. Cancer Res. 1994 Jun 15;54(12):3196–3201. [PubMed] [Google Scholar]
- Benson A. M., Hunkeler M. J., Talalay P. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5216–5220. doi: 10.1073/pnas.77.9.5216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Caporaso N., Landi M. T., Vineis P. Relevance of metabolic polymorphisms to human carcinogenesis: evaluation of epidemiologic evidence. Pharmacogenetics. 1991 Oct;1(1):4–19. doi: 10.1097/00008571-199110000-00003. [DOI] [PubMed] [Google Scholar]
- Edwards Y. H., Potter J., Hopkinson D. A. Human FAD-dependent NAD(P)H diaphorase. Biochem J. 1980 May 1;187(2):429–436. doi: 10.1042/bj1870429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egner P. A., Kensler T. W., Prestera T., Talalay P., Libby A. H., Joyner H. H., Curphey T. J. Regulation of phase 2 enzyme induction by oltipraz and other dithiolethiones. Carcinogenesis. 1994 Feb;15(2):177–181. doi: 10.1093/carcin/15.2.177. [DOI] [PubMed] [Google Scholar]
- Faeder E. J., Siegel L. M. A rapid micromethod for determination of FMN and FAD in mixtures. Anal Biochem. 1973 May;53(1):332–336. doi: 10.1016/0003-2697(73)90442-9. [DOI] [PubMed] [Google Scholar]
- Gibson N. W., Hartley J. A., Butler J., Siegel D., Ross D. Relationship between DT-diaphorase-mediated metabolism of a series of aziridinylbenzoquinones and DNA damage and cytotoxicity. Mol Pharmacol. 1992 Sep;42(3):531–536. [PubMed] [Google Scholar]
- Gibson N. W., Hartley J. A., Butler J., Siegel D., Ross D. Relationship between DT-diaphorase-mediated metabolism of a series of aziridinylbenzoquinones and DNA damage and cytotoxicity. Mol Pharmacol. 1992 Sep;42(3):531–536. [PubMed] [Google Scholar]
- Gibson N. W., Phillips R. M., Ross D. Mitomycin C. Cancer Chemother Biol Response Modif. 1994;15:51–57. [PubMed] [Google Scholar]
- Gonzalez F. J., Idle J. R. Pharmacogenetic phenotyping and genotyping. Present status and future potential. Clin Pharmacokinet. 1994 Jan;26(1):59–70. doi: 10.2165/00003088-199426010-00005. [DOI] [PubMed] [Google Scholar]
- Jaiswal A. K. Human NAD(P)H:quinone oxidoreductase (NQO1) gene structure and induction by dioxin. Biochemistry. 1991 Nov 5;30(44):10647–10653. doi: 10.1021/bi00108a007. [DOI] [PubMed] [Google Scholar]
- Jaiswal A. K., McBride O. W., Adesnik M., Nebert D. W. Human dioxin-inducible cytosolic NAD(P)H:menadione oxidoreductase. cDNA sequence and localization of gene to chromosome 16. J Biol Chem. 1988 Sep 25;263(27):13572–13578. [PubMed] [Google Scholar]
- Kolesar J. M., Kuhn J. G., Burris H. A., 3rd Detection of a point mutation in NQO1 (DT-diaphorase) in a patient with colon cancer. J Natl Cancer Inst. 1995 Jul 5;87(13):1022–1024. doi: 10.1093/jnci/87.13.1022-a. [DOI] [PubMed] [Google Scholar]
- Kuehl B. L., Paterson J. W., Peacock J. W., Paterson M. C., Rauth A. M. Presence of a heterozygous substitution and its relationship to DT-diaphorase activity. Br J Cancer. 1995 Sep;72(3):555–561. doi: 10.1038/bjc.1995.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li R., Bianchet M. A., Talalay P., Amzel L. M. The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8846–8850. doi: 10.1073/pnas.92.19.8846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma Q., Cui K., Xiao F., Lu A. Y., Yang C. S. Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarol-binding site in rat liver NAD(P)H:quinone oxidoreductase by site-directed mutagenesis. J Biol Chem. 1992 Nov 5;267(31):22298–22304. [PubMed] [Google Scholar]
- Malkinson A. M., Siegel D., Forrest G. L., Gazdar A. F., Oie H. K., Chan D. C., Bunn P. A., Mabry M., Dykes D. J., Harrison S. D. Elevated DT-diaphorase activity and messenger RNA content in human non-small cell lung carcinoma: relationship to the response of lung tumor xenografts to mitomycin Cł. Cancer Res. 1992 Sep 1;52(17):4752–4757. [PubMed] [Google Scholar]
- Marshall R. S., Paterson M. C., Rauth A. M. DT-diaphorase activity and mitomycin C sensitivity in non-transformed cell strains derived from members of a cancer-prone family. Carcinogenesis. 1991 Jul;12(7):1175–1180. doi: 10.1093/carcin/12.7.1175. [DOI] [PubMed] [Google Scholar]
- Marshall R. S., Paterson M. C., Rauth A. M. Studies on the mechanism of resistance to mitomycin C and porfiromycin in a human cell strain derived from a cancer-prone individual. Biochem Pharmacol. 1991 May 1;41(9):1351–1360. doi: 10.1016/0006-2952(91)90108-h. [DOI] [PubMed] [Google Scholar]
- Peppel K., Baglioni C. A simple and fast method to extract RNA from tissue culture cells. Biotechniques. 1990 Dec;9(6):711–713. [PubMed] [Google Scholar]
- Prochaska H. J., Santamaria A. B., Talalay P. Rapid detection of inducers of enzymes that protect against carcinogens. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2394–2398. doi: 10.1073/pnas.89.6.2394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross D., Siegel D., Beall H., Prakash A. S., Mulcahy R. T., Gibson N. W. DT-diaphorase in activation and detoxification of quinones. Bioreductive activation of mitomycin C. Cancer Metastasis Rev. 1993 Jun;12(2):83–101. doi: 10.1007/BF00689803. [DOI] [PubMed] [Google Scholar]
- Ross D., Siegel D., Gibson N. W., Pacheco D., Thomas D. J., Reasor M., Wierda D. Activation and deactivation of quinones catalyzed by DT-diaphorase. Evidence for bioreductive activation of diaziquone (AZQ) in human tumor cells and detoxification of benzene metabolites in bone marrow stroma. Free Radic Res Commun. 1990;8(4-6):373–381. doi: 10.3109/10715769009053371. [DOI] [PubMed] [Google Scholar]
- Ross D., Traver R. D., Siegel D., Kuehl B. L., Misra V., Rauth A. M. A polymorphism in NAD(P)H:quinone oxidoreductase (NQO1): relationship of a homozygous mutation at position 609 of the NQO1 cDNA to NQO1 activity. Br J Cancer. 1996 Sep;74(6):995–996. doi: 10.1038/bjc.1996.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosvold E. A., McGlynn K. A., Lustbader E. D., Buetow K. H. Identification of an NAD(P)H:quinone oxidoreductase polymorphism and its association with lung cancer and smoking. Pharmacogenetics. 1995 Aug;5(4):199–206. doi: 10.1097/00008571-199508000-00003. [DOI] [PubMed] [Google Scholar]
- Schlager J. J., Powis G. Cytosolic NAD(P)H:(quinone-acceptor)oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. Int J Cancer. 1990 Mar 15;45(3):403–409. doi: 10.1002/ijc.2910450304. [DOI] [PubMed] [Google Scholar]
- Siegel D., Gibson N. W., Preusch P. C., Ross D. Metabolism of mitomycin C by DT-diaphorase: role in mitomycin C-induced DNA damage and cytotoxicity in human colon carcinoma cells. Cancer Res. 1990 Dec 1;50(23):7483–7489. [PubMed] [Google Scholar]
- Traver R. D., Horikoshi T., Danenberg K. D., Stadlbauer T. H., Danenberg P. V., Ross D., Gibson N. W. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res. 1992 Feb 15;52(4):797–802. [PubMed] [Google Scholar]
- Walton M. I., Workman P. Enzymology of the reductive bioactivation of SR 4233. A novel benzotriazine di-N-oxide hypoxic cell cytotoxin. Biochem Pharmacol. 1990 Jun 1;39(11):1735–1742. doi: 10.1016/0006-2952(90)90119-6. [DOI] [PubMed] [Google Scholar]
- Wattenberg L. W. Chemoprevention of cancer. Cancer Res. 1985 Jan;45(1):1–8. [PubMed] [Google Scholar]
- Zhang Y., Talalay P., Cho C. G., Posner G. H. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2399–2403. doi: 10.1073/pnas.89.6.2399. [DOI] [PMC free article] [PubMed] [Google Scholar]



