Abstract
Photoautotrophically grown cells of the blue-green alga (cyanobacterium) Nostoc sp. strain Mac assimilated and oxidized both glucose and fructose in the dark at different rates. The rate of fructose metabolism in these cells could be stimulated by casein hydrolysate, the effect being most pronounced at low sugar concentrations. This stimulation was not seen in cells grown heterotrophically in the dark, suggesting that it is a transitory phenomenon which disappears during the autotrophy-heterotrophy growth transition. The stimulation of fructose assimilation by casein hydrolysate was abolished by chloramphenicol or streptomycin, suggesting there are rate-limiting steps in protein biosynthesis in the dark that ultimately lead to inhibition of fructose uptake. Glucose metabolism did not show these phenomena, indicating there are differences in the metabolism of the two sugars.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beauclerk A. A., Smith A. J. Transport of D-glucose and 3-O-methyl-D-glucose in the cyanobacteria Aphanocapsa 6714 and Nostoc strain Mac. Eur J Biochem. 1978 Jan 2;82(1):187–197. doi: 10.1111/j.1432-1033.1978.tb12011.x. [DOI] [PubMed] [Google Scholar]
- Bowyer J. W., Skerman V. B. Production of axemic cultures of soil-borne and endophytic blue-green algae. J Gen Microbiol. 1968 Dec;54(2):299–306. doi: 10.1099/00221287-54-2-299. [DOI] [PubMed] [Google Scholar]
- Cheung W. Y., Gibbs M. Dark and photometabolism of sugars by a blue green alga: Tolypothrix tenuis. Plant Physiol. 1966 Apr;41(4):731–737. doi: 10.1104/pp.41.4.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FAY P. HETEROTROPHY AND NITROGEN FIXATION IN CHLOROGLOEA FRITSCHII. J Gen Microbiol. 1965 Apr;39:11–20. doi: 10.1099/00221287-39-1-11. [DOI] [PubMed] [Google Scholar]
- Freston J. W., Bouchier I. A. Potentiation of carbon tetrachloride toxicity by dimethyl sulphoxide. Nature. 1967 May 13;214(5089):734–735. doi: 10.1038/214734a0. [DOI] [PubMed] [Google Scholar]
- Ihlenfeldt M. J., Gibson J. Acetate uptake by the unicellular cyanobacteria Synechococcus and Aphanocapsa. Arch Microbiol. 1977 Jun 20;113(3):231–241. doi: 10.1007/BF00492030. [DOI] [PubMed] [Google Scholar]
- Miller J. S., Allen M. M. Carbon utilization patterns in the heterotrophic blue-green alga Chlorogloea fritschii. Arch Mikrobiol. 1972;86(1):1–12. doi: 10.1007/BF00412395. [DOI] [PubMed] [Google Scholar]
- Pearce J., Carr N. G. The metabolism of acetate by the blue-green algae, Anabaena variabilis and Anacystis nidulans. J Gen Microbiol. 1967 Nov;49(2):301–313. doi: 10.1099/00221287-49-2-301. [DOI] [PubMed] [Google Scholar]
- Pelroy R. A., Rippka R., Stanier R. Y. Metabolism of glucose by unicellular blue-green algae. Arch Mikrobiol. 1972;87(4):303–322. doi: 10.1007/BF00409131. [DOI] [PubMed] [Google Scholar]
- Pulich W. M., Baalen C. Purification and characterization of glucose dehydrogenase from a heterotrophically grown blue-green alga. Plant Physiol. 1976 Sep;58(3):393–397. doi: 10.1104/pp.58.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pulich W. M., Van Baalen C. Pyridine nucleotide-dependent glucose dehydrogenase activity in blue-green algae. J Bacteriol. 1973 Apr;114(1):28–33. doi: 10.1128/jb.114.1.28-33.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raboy B., Padan E., Shilo M. Heterotrophic capacities of Plectonema boryanum. Arch Microbiol. 1976 Oct 11;110(1):77–85. doi: 10.1007/BF00416971. [DOI] [PubMed] [Google Scholar]
- Smith A. J., London J., Stanier R. Y. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol. 1967 Oct;94(4):972–983. doi: 10.1128/jb.94.4.972-983.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White A. W., Shilo M. Heterotrophic growth of the filamentous blue-green alga Plectonema boryanum. Arch Microbiol. 1975;102(2):123–127. doi: 10.1007/BF00428356. [DOI] [PubMed] [Google Scholar]
- Whiting P. H., Midgley M., Dawes E. A. The regulation of transport of glucose, gluconate and 2-oxogluconate and of glucose catabolism in Pseudomonas aeruginosa. Biochem J. 1976 Mar 15;154(3):659–668. doi: 10.1042/bj1540659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whiting P. H., Midgley M., Dawes E. A. The role of glucose limitation in the regulation of the transport of glucose, gluconate and 2-oxogluconate, and of glucose metabolism in Pseudomonas aeruginosa. J Gen Microbiol. 1976 Feb;92(2):304–310. doi: 10.1099/00221287-92-2-304. [DOI] [PubMed] [Google Scholar]
- Wolk C. P., Shaffer P. W. Heterotrophic micro- and macrocultures of a nitrogen-fixing cyanobacterium. Arch Microbiol. 1976 Nov 2;110(23):145–147. doi: 10.1007/BF00690221. [DOI] [PubMed] [Google Scholar]