Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;76(7):870–877. doi: 10.1038/bjc.1997.477

Menadione-resistant Chinese hamster ovary cells have an increased capacity for glutathione synthesis.

K A Vallis 1, J Reglinski 1, M Garner 1, M M Bridgeman 1, C R Wolf 1
PMCID: PMC2228060  PMID: 9328145

Abstract

A cell line (MRc40) resistant to the model quinone compound, menadione, has been isolated from a parental Chinese hamster ovary cell line (CHO-K1). The known relationship between menadione toxicity and glutathione (GSH) depletion led us to investigate whether the mechanism of resistance of MRc40 was related to alteration in GSH homeostasis. Intracellular concentrations of GSH and cysteine (CySH) were twofold and 3.2-fold greater in MRc40 than in CHO-K1. Following exposure to menadione, GSH and CySH were depleted, but subsequent recovery of thiols was more rapid and of greater magnitude in MRc40 than in CHO-K1. Twelve hours after exposure to menadione, the concentrations of GSH and CySH were 9.7- and 4.2-fold greater in MRc40 than in CHO-K1. Using nuclear magnetic resonance (NMR) spectroscopy, we observed the in situ removal of menadione from cell suspensions of CHO-K1 and MRc40. However, only in CHO-K1 did we observe concomitant depletion of NMR-visible GSH. We conclude that the perturbation of GSH metabolism contributes to the resistant phenotype and is an important characteristic of menadione-resistant CHO cells.

Full text

PDF
870

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannai S. Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem. 1986 Feb 15;261(5):2256–2263. [PubMed] [Google Scholar]
  2. Bannai S., Tateishi N. Role of membrane transport in metabolism and function of glutathione in mammals. J Membr Biol. 1986;89(1):1–8. doi: 10.1007/BF01870891. [DOI] [PubMed] [Google Scholar]
  3. Chlebowski R. T., Akman S. A., Block J. B. Vitamin K in the treatment of cancer. Cancer Treat Rev. 1985 Mar;12(1):49–63. doi: 10.1016/0305-7372(85)90012-x. [DOI] [PubMed] [Google Scholar]
  4. Cotgreave I. A., Moldéus P. Methodologies for the application of monobromobimane to the simultaneous analysis of soluble and protein thiol components of biological systems. J Biochem Biophys Methods. 1986 Nov;13(4-5):231–249. doi: 10.1016/0165-022x(86)90102-8. [DOI] [PubMed] [Google Scholar]
  5. DEELEY T. J. A clinical trial of synkavit in the treatment of carcinoma of the bronchus. Br J Cancer. 1962 Sep;16:387–389. doi: 10.1038/bjc.1962.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deneke S. M. Induction of cystine transport in bovine pulmonary artery endothelial cells by sodium arsenite. Biochim Biophys Acta. 1992 Aug 24;1109(2):127–131. doi: 10.1016/0005-2736(92)90075-w. [DOI] [PubMed] [Google Scholar]
  7. Dethmers J. K., Meister A. Glutathione export by human lymphoid cells: depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7492–7496. doi: 10.1073/pnas.78.12.7492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Di Monte D., Bellomo G., Thor H., Nicotera P., Orrenius S. Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca2+ homeostasis. Arch Biochem Biophys. 1984 Dec;235(2):343–350. doi: 10.1016/0003-9861(84)90207-8. [DOI] [PubMed] [Google Scholar]
  9. Greenberg J. T., Monach P., Chou J. H., Josephy P. D., Demple B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6181–6185. doi: 10.1073/pnas.87.16.6181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jiang X. R., Yang M., Morris C. J., Newland A. C., Naughton D. P., Blake D. R., Zhang Z., Grootveld M. C. High field proton NMR investigations of the metabolic profiles of multidrug-sensitive and -resistant leukaemic cell lines: evidence for diminished taurine levels in multidrug-resistant cells. Free Radic Res Commun. 1993;19(6):355–369. doi: 10.3109/10715769309056526. [DOI] [PubMed] [Google Scholar]
  11. Kramer R. A., Zakher J., Kim G. Role of the glutathione redox cycle in acquired and de novo multidrug resistance. Science. 1988 Aug 5;241(4866):694–697. doi: 10.1126/science.3399900. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Livesey J. C., Golden R. N., Shankland E. G., Grunbaum Z., Wyman M., Krohn K. A. Magnetic resonance spectroscopic measurement of cellular thiol reduction-oxidation state. Int J Radiat Oncol Biol Phys. 1992;22(4):755–757. doi: 10.1016/0360-3016(92)90518-m. [DOI] [PubMed] [Google Scholar]
  14. Margolin K. A., Akman S. A., Leong L. A., Morgan R. J., Somlo G., Raschko J. W., Ahn C., Doroshow J. H. Phase I study of mitomycin C and menadione in advanced solid tumors. Cancer Chemother Pharmacol. 1995;36(4):293–298. doi: 10.1007/BF00689046. [DOI] [PubMed] [Google Scholar]
  15. Martins E. A., Meneghini R. DNA damage and lethal effects of hydrogen peroxide and menadione in Chinese hamster cells: distinct mechanisms are involved. Free Radic Biol Med. 1990;8(5):433–440. doi: 10.1016/0891-5849(90)90056-o. [DOI] [PubMed] [Google Scholar]
  16. McKay C. N., Brown D. H., Reglinski J., Smith W. E., Capell H. A., Sturrock R. D. Changes in glutathione in intact erythrocytes during incubation with penicillamine as detected by 1H spin-echo NMR spectroscopy. Biochim Biophys Acta. 1986 Aug 29;888(1):30–35. doi: 10.1016/0167-4889(86)90067-4. [DOI] [PubMed] [Google Scholar]
  17. Miura K., Ishii T., Sugita Y., Bannai S. Cystine uptake and glutathione level in endothelial cells exposed to oxidative stress. Am J Physiol. 1992 Jan;262(1 Pt 1):C50–C58. doi: 10.1152/ajpcell.1992.262.1.C50. [DOI] [PubMed] [Google Scholar]
  18. Moore W. R., Anderson M. E., Meister A., Murata K., Kimura A. Increased capacity for glutathione synthesis enhances resistance to radiation in Escherichia coli: a possible model for mammalian cell protection. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1461–1464. doi: 10.1073/pnas.86.5.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. NICKERSON W. J., FALCONE G., STRAUSS G. STUDIES ON QUINONE-THIOETHERS. I. MECHANISM OF FORMATION AND PROPERTIES OF THIODIONE. Biochemistry. 1963 May-Jun;2:537–543. doi: 10.1021/bi00903a025. [DOI] [PubMed] [Google Scholar]
  20. Ngo E. O., Nutter L. M. Status of glutathione and glutathione-metabolizing enzymes in menadione-resistant human cancer cells. Biochem Pharmacol. 1994 Jan 20;47(2):421–424. doi: 10.1016/0006-2952(94)90036-1. [DOI] [PubMed] [Google Scholar]
  21. Richman P. G., Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem. 1975 Feb 25;250(4):1422–1426. [PubMed] [Google Scholar]
  22. Ross D., Thor H., Orrenius S., Moldeus P. Interaction of menadione (2-methyl-1,4-naphthoquinone) with glutathione. Chem Biol Interact. 1985 Oct;55(1-2):177–184. doi: 10.1016/s0009-2797(85)80126-5. [DOI] [PubMed] [Google Scholar]
  23. Russo A., Mitchell J. B., Finkelstein E., DeGraff W. G., Spiro I. J., Gamson J. The effects of cellular glutathione elevation on the oxygen enhancement ratio. Radiat Res. 1985 Aug;103(2):232–239. [PubMed] [Google Scholar]
  24. Thor H., Smith M. T., Hartzell P., Bellomo G., Jewell S. A., Orrenius S. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem. 1982 Oct 25;257(20):12419–12425. [PubMed] [Google Scholar]
  25. Vallis K. A., Wolf C. R. Relationship between the adaptive response to oxidants and stable menadione-resistance in Chinese hamster ovary cell lines. Carcinogenesis. 1996 Apr;17(4):649–654. doi: 10.1093/carcin/17.4.649. [DOI] [PubMed] [Google Scholar]
  26. Vos O., Roos-Verhey W. S. Radioprotection by glutathione esters and cysteamine in normal and glutathione-depleted mammalian cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1988 Feb;53(2):273–281. doi: 10.1080/09553008814550621. [DOI] [PubMed] [Google Scholar]
  27. Wolf C. R., Lewis A. D., Carmichael J., Adams D. J., Allan S. G., Ansell D. J. The role of glutathione in determining the response of normal and tumor cells to anticancer drugs. Biochem Soc Trans. 1987 Aug;15(4):728–730. doi: 10.1042/bst0150728. [DOI] [PubMed] [Google Scholar]
  28. al-Kabban M., Watson I. D., Stewart M. J., Reglinski J., Smith W. E., Suckling C. J. The use of 1H spin echo NMR and HPLC to confirm doxorubicin induced depletion of glutathione in the intact HeLa cell. Br J Cancer. 1988 Jun;57(6):553–558. doi: 10.1038/bjc.1988.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Jong S., Mulder N. H., de Vries E. G., Robillard G. T. NMR spectroscopy analysis of phosphorus metabolites and the effect of adriamycin on these metabolite levels in an adriamycin-sensitive and -resistant human small cell lung carcinoma cell line. Br J Cancer. 1991 Feb;63(2):205–212. doi: 10.1038/bjc.1991.50. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES