Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1982 Dec 1;80(6):863–883. doi: 10.1085/jgp.80.6.863

Desensitization of skate photoreceptors by bleaching and background light

PMCID: PMC2228650  PMID: 7175492

Abstract

Through extracellular measurements of photoreceptor responses to flashed stimuli, we examined how the bleaching of rhodopsin affects increment receptor threshold in the isolated retina of the skate (Raja oscellata and R. erinacea). Both initially unbleached and previously bleached photoreceptors, when exposed to full-field luminous backgrounds of fixed intensity, attain approximately stable levels of increment threshold that vary with the intensity of the background light. Values of stabilized increment thresholds measured after various extents of bleaching (less than approximately 50%), when plotted against background intensity in log-log coordinates, tend to converge with increasing intensity of the background; this relationship of the increment threshold functions resembles that which Blakemore and Rushton (1965b) found to describe the transient effect of bleaching on psychophysical increment threshold for the human rod mechanism. Our data are consistent with the possibility that related photochemical processes govern the stabilized levels of receptor sensitivity exhibited by the isolated retina (a) during steady illumination and (b) long after substantial bleaching.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpern M. Rhodopsin kinetics in the human eye. J Physiol. 1971 Sep;217(2):447–471. doi: 10.1113/jphysiol.1971.sp009580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashmore J. F., Falk G. Photon-like signals following weak rhodopsin bleaches. Nature. 1981 Feb 5;289(5797):489–491. doi: 10.1038/289489a0. [DOI] [PubMed] [Google Scholar]
  3. BARLOW H. B., SPARROCK J. M. THE ROLE OF AFTERIMAGES IN DARK ADAPTATION. Science. 1964 Jun 12;144(3624):1309–1314. doi: 10.1126/science.144.3624.1309. [DOI] [PubMed] [Google Scholar]
  4. Baron W. S., Boynton R. M., van Norren D. Primate cone sensitivity to flicker during light and dark adaptation as indicated by the foveal local electroretinogram. Vision Res. 1979;19(2):109–116. doi: 10.1016/0042-6989(79)90039-7. [DOI] [PubMed] [Google Scholar]
  5. Bastian B. L., Fain G. L. Light adaptation in toad rods: requirement for an internal messenger which is not calcium. J Physiol. 1979 Dec;297(0):493–520. doi: 10.1113/jphysiol.1979.sp013053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blakemore C. B., Rushton W. A. Dark adaptation and increment threshold in a rod monochromat. J Physiol. 1965 Dec;181(3):612–628. doi: 10.1113/jphysiol.1965.sp007786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blakemore C. B., Rushton W. A. The rod increment threshold during dark adaptation in normal and rod monochromat. J Physiol. 1965 Dec;181(3):629–640. doi: 10.1113/jphysiol.1965.sp007787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boynton R. M., Whitten D. N. Visual adaptation in monkey cones: recordings of late receptor potentials. Science. 1970 Dec 25;170(3965):1423–1426. doi: 10.1126/science.170.3965.1423. [DOI] [PubMed] [Google Scholar]
  9. Brin K. P., Ripps H. Rhodopsin photoproducts and rod sensitivity in the skate retina. J Gen Physiol. 1977 Jan;69(1):97–120. doi: 10.1085/jgp.69.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bäckström A. C., Hemilä S. O. Dark-adaptation in frog rods: changes in the stimulus-response function. J Physiol. 1979 Feb;287:107–125. doi: 10.1113/jphysiol.1979.sp012649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. CONE R. A. THE RAT ELECTRORETINOGRAM. I. CONTRASTING EFFECTS OF ADAPTATION ON THE AMPLITUDE AND LATENCY OF THE B-WAVE. J Gen Physiol. 1964 Jul;47:1089–1105. doi: 10.1085/jgp.47.6.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clack J. W., Oakley B., 2nd, Pepperberg D. R. Light-dependent effects of a hydrolysis-resistant analog of GTP on rod photoresponses in the toad retina. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2690–2694. doi: 10.1073/pnas.79.8.2690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DOWLING J. E. NEURAL AND PHOTOCHEMICAL MECHANISMS OF VISUAL ADAPTATION IN THE RAT. J Gen Physiol. 1963 Jul;46:1287–1301. doi: 10.1085/jgp.46.6.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dawis S. M. The compression model: a re-examination. Vision Res. 1981;21(10):1511–1515. doi: 10.1016/0042-6989(81)90223-6. [DOI] [PubMed] [Google Scholar]
  15. Donner K. O., Hemilä S. O. Dark-adaptation of the aspartate-isolated rod receptor potential of the frog retina: threshold measurements. J Physiol. 1979 Feb;287:93–106. doi: 10.1113/jphysiol.1979.sp012648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Donner K. O., Hemilä S., Reuter T. Bleaching and background adaptation in frog rods. Vision Res. 1979;19(4):399–400. doi: 10.1016/0042-6989(79)90103-2. [DOI] [PubMed] [Google Scholar]
  17. Donner K. O., Reuter T. Visual adaptation of the rhodopsin rods in the frogs retina. J Physiol. 1968 Nov;199(1):59–87. doi: 10.1113/jphysiol.1968.sp008639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dowling J. E., Ripps H. Adaptation in skate photoreceptors. J Gen Physiol. 1972 Dec;60(6):698–719. doi: 10.1085/jgp.60.6.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dowling J. E., Ripps H. Visual adaptation in the retina of the skate. J Gen Physiol. 1970 Oct;56(4):491–520. doi: 10.1085/jgp.56.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ernst W., Kemp C. M., Lake N. Studies on the effects of bleaching amphibian rod pigments. IV. Photoresponses recorded intracellularly from axolotl red rods following bleaching flashes. Exp Eye Res. 1978 Jul;27(1):117–127. doi: 10.1016/0014-4835(78)90058-1. [DOI] [PubMed] [Google Scholar]
  21. Ernst W. The dependence of critical flicker frequency and the rod threshold on the state of adaptation of the eye. Vision Res. 1968 Jul;8(7):889–900. doi: 10.1016/0042-6989(68)90138-7. [DOI] [PubMed] [Google Scholar]
  22. Frank R. N. Properties of "neural" adaptation in components of the frog electroretinogram. Vision Res. 1971 Oct;11(10):1113–1123. doi: 10.1016/0042-6989(71)90115-5. [DOI] [PubMed] [Google Scholar]
  23. Gale J. G., Williams T. P. Light adaptation and temperature effects in rat PIII retinal response: analysis with a two-state model. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4021–4025. doi: 10.1073/pnas.77.7.4021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Geisler W. S. Comments on the testing of two prominent dark-adaptation hypotheses. Vision Res. 1980;20(9):807–811. doi: 10.1016/0042-6989(80)90012-7. [DOI] [PubMed] [Google Scholar]
  25. Geisler W. S. Effects of bleaching and backgrounds on the flash response of the cone system. J Physiol. 1981 Mar;312:413–434. doi: 10.1113/jphysiol.1981.sp013635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Grabowski S. R., Pak W. L. Intracellular recordings of rod responses during dark-adaptation. J Physiol. 1975 May;247(2):363–391. doi: 10.1113/jphysiol.1975.sp010936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Grabowski S. R., Pinto L. H., Pak W. L. Adaptation in retinal rods of axolotl: intracellular recordings. Science. 1972 Jun 16;176(4040):1240–1243. doi: 10.1126/science.176.4040.1240. [DOI] [PubMed] [Google Scholar]
  28. Green D. G., Dowling J. E., Siegel I. M., Ripps H. Retinal mechanisms of visual adaptation in the skate. J Gen Physiol. 1975 Apr;65(4):483–502. doi: 10.1085/jgp.65.4.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Green D. G., Siegel I. M. Double branched flicker fusion curves from the all-rod skate retina. Science. 1975 Jun 13;188(4193):1120–1122. doi: 10.1126/science.1215989. [DOI] [PubMed] [Google Scholar]
  30. HATTWICK R. G. Dark adaptation to intermediate levels and to complete darkness. J Opt Soc Am. 1954 Mar;44(3):223–228. doi: 10.1364/josa.44.000223. [DOI] [PubMed] [Google Scholar]
  31. Hollins M., Alpern M. Dark adaptation and visual pigment regeneration in human cones. J Gen Physiol. 1973 Oct;62(4):430–447. doi: 10.1085/jgp.62.4.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hood D. C., Hock P. A., Grover B. G. Dark adaptation of the frog's rods. Vision Res. 1973 Oct;13(10):1953–1963. doi: 10.1016/0042-6989(73)90066-7. [DOI] [PubMed] [Google Scholar]
  33. Kleinschmidt J., Dowling J. E. Intracellular recordings from gecko photoreceptors during light and dark adaptation. J Gen Physiol. 1975 Nov;66(5):617–648. doi: 10.1085/jgp.66.5.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lamb T. D. Spontaneous quantal events induced in toad rods by pigment bleaching. Nature. 1980 Sep 25;287(5780):349–351. doi: 10.1038/287349a0. [DOI] [PubMed] [Google Scholar]
  35. Lamb T. D. The involvement of rod photoreceptors in dark adaptation. Vision Res. 1981;21(12):1773–1782. doi: 10.1016/0042-6989(81)90211-x. [DOI] [PubMed] [Google Scholar]
  36. MATTHEWS R. G., HUBBARD R., BROWN P. K., WALD G. TAUTOMERIC FORMS OF METARHODOPSIN. J Gen Physiol. 1963 Nov;47:215–240. doi: 10.1085/jgp.47.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Maffei L., Poppele R. E. Transient and steady state electroretinal responses. Vision Res. 1968 Mar;8(3):229–246. doi: 10.1016/0042-6989(68)90011-4. [DOI] [PubMed] [Google Scholar]
  38. Ostroy S. E. Rhodopsin and the visual process. Biochim Biophys Acta. 1977 Jun 21;463(1):91–125. doi: 10.1016/0304-4173(77)90004-0. [DOI] [PubMed] [Google Scholar]
  39. Pepperberg D. R., Brown P. K., Lurie M., Dowling J. E. Visual pigment and photoreceptor sensitivity in the isolated skate retina. J Gen Physiol. 1978 Apr;71(4):369–396. doi: 10.1085/jgp.71.4.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pepperberg D. R., Lurie M., Brown P. K., Dowling J. E. Visual adaptation: effects of externally applied retinal on the light-adapted, isolated skate retina. Science. 1976 Jan 30;191(4225):394–396. doi: 10.1126/science.1246621. [DOI] [PubMed] [Google Scholar]
  41. RUSHTON W. A. Rhodopsin measurement and dark-adaptation in a subject deficient in cone vision. J Physiol. 1961 Apr;156:193–205. doi: 10.1113/jphysiol.1961.sp006668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ripps H., Mehaffey L., 3rd, Siegel I. M. Rhodopsin kinetics in the cat retina. J Gen Physiol. 1981 Mar;77(3):317–334. doi: 10.1085/jgp.77.3.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ripps H., Weale R. A. Rhodopsin regeneration in man. Nature. 1969 May 24;222(5195):775–777. doi: 10.1038/222775a0. [DOI] [PubMed] [Google Scholar]
  44. Rushton W. A. Light and dark adaptation. Invest Ophthalmol. 1972 Jun;11(6):503–517. [PubMed] [Google Scholar]
  45. Rushton W. A., Powell D. S. The early phase of dark adaptation. Vision Res. 1972 Jun;12(6):1083–1093. doi: 10.1016/0042-6989(72)90099-5. [DOI] [PubMed] [Google Scholar]
  46. Sillman A. J., Ito H., Tomita T. Studies on the mass receptor potential of the isolated frog retina. I. General properties of the response. Vision Res. 1969 Dec;9(12):1435–1442. doi: 10.1016/0042-6989(69)90059-5. [DOI] [PubMed] [Google Scholar]
  47. Williams T. P., Gale J. G. "Compression" of retinal responsivity: V-log I functions and increment thresholds. Vision Res. 1978;18(5):587–590. doi: 10.1016/0042-6989(78)90207-9. [DOI] [PubMed] [Google Scholar]
  48. Witkovsky P., Dudek F. E., Ripps H. Slow PIII component of the carp electroretinogram. J Gen Physiol. 1975 Feb;65(2):119–134. doi: 10.1085/jgp.65.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Witkovsky P., Gallin E., Hollyfield J. G., Ripps H., Bridges C. D. Photoreceptor thresholds and visual pigment levels in normal and vitamin A-deprived Xenopus tadpoles. J Neurophysiol. 1976 Nov;39(6):1272–1287. doi: 10.1152/jn.1976.39.6.1272. [DOI] [PubMed] [Google Scholar]
  50. Witkovsky P., Nelson J., Ripps H. Action spectra and adaptation properties of carp photoreceptors. J Gen Physiol. 1973 Apr;61(4):401–423. doi: 10.1085/jgp.61.4.401. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES