Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1984 Sep 1;84(3):475–504. doi: 10.1085/jgp.84.3.475

Reaccumulation of [K+]o in the toad retina during maintained illumination

PMCID: PMC2228745  PMID: 6090581

Abstract

Using K+-selective microelectrodes, [K+]o was measured in the subretinal space of the isolated retina of the toad, Bufo marinus. During maintained illumination, [K+]o fell to a minimum and then recovered to a steady level that was approximately 0.1 mM below its dark level. Spatial buffering of [K+]o by Muller (glial) cells could contribute to this reaccumulation of K+. However, superfusion with substances that might be expected to block glial transport of K+ had no significant effect upon the reaccumulation of K+. These substances included blockers of gK (TEA+, Cs+, Rb+, 4-AP) and a gliotoxin (alpha AAA). Progressive slowing of the rods' Na+/K+ pump (perhaps caused by a light-evoked decrease in [Na+]i) also could contribute to this reaccumulation of K+ by reducing the uptake of K+ from the subretinal space. As evidence for a major contribution by this mechanism, treatments designed to prevent such slowing of the pump reversibly blocked reaccumulation. These treatments included superfusion with 2 microM ouabain, or lowering [K+]o, PO2, or temperature. It is likely that such treatments inhibit the pump, increase [Na+]i, and attenuate any light-evoked decrease in [Na+]i. The results are consistent with the following hypothesis. At light onset, the decrease in rod gNa will reduce the Na+ influx and the resulting rod hyperpolarization will reduce the K+ efflux. In combination with these reduced passive fluxes, the continuing active fluxes will lower both [K+]o and [Na+]i, which in turn will inhibit the pump. In support of this hypothesis, the solutions to a pair of coupled differential equations that model changes in both [K+]o and [Na+]i match quantitatively the time course of the observed changes in [K+]o during and after maintained illumination for all stimuli examined.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballanyi K., Grafe P., ten Bruggencate G. Intracellular free sodium and potassium, post-carbachol hyperpolarization, and extracellular potassium-undershoot in rat sympathetic neurones. Neurosci Lett. 1983 Aug 8;38(3):275–279. doi: 10.1016/0304-3940(83)90381-6. [DOI] [PubMed] [Google Scholar]
  2. Benninger C., Kadis J., Prince D. A. Extracellular calcium and potassium changes in hippocampal slices. Brain Res. 1980 Apr 7;187(1):165–182. doi: 10.1016/0006-8993(80)90502-8. [DOI] [PubMed] [Google Scholar]
  3. Bonaventure N., Roussel G., Wioland N. Effects of DL-alpha-amino adipic acid on Müller cells in frog and chicken retinae in vivo: relation to ERG b wave, ganglion cell discharge and tectal evoked potentials. Neurosci Lett. 1981 Nov 18;27(1):81–87. doi: 10.1016/0304-3940(81)90209-3. [DOI] [PubMed] [Google Scholar]
  4. Brown K. T., Flaming D. G. Technique for precision beveling of relatively large micropipettes. J Neurosci Methods. 1979 Mar;1(1):25–34. doi: 10.1016/0165-0270(79)90004-9. [DOI] [PubMed] [Google Scholar]
  5. Chapman R. A., Coray A., McGuigan J. A. Sodium/calcium exchange in mammalian ventricular muscle: a study with sodium-sensitive micro-electrodes. J Physiol. 1983 Oct;343:253–276. doi: 10.1113/jphysiol.1983.sp014891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen C. J., Fozzard H. A., Sheu S. S. Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circ Res. 1982 May;50(5):651–662. doi: 10.1161/01.res.50.5.651. [DOI] [PubMed] [Google Scholar]
  7. Coles J. A., Orkand R. K. Modification of potassium movement through the retina of the drone (Apis mellifera male) by glial uptake. J Physiol. 1983 Jul;340:157–174. doi: 10.1113/jphysiol.1983.sp014756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coles J. A., Tsacopoulos M. Potassium activity in photoreceptors, glial cells and extracellular space in the drone retina: changes during photostimulation. J Physiol. 1979 May;290(2):525–549. doi: 10.1113/jphysiol.1979.sp012788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Connors B. W., Ransom B. R., Kunis D. M., Gutnick M. J. Activity-dependent K+ accumulation in the developing rat optic nerve. Science. 1982 Jun 18;216(4552):1341–1343. doi: 10.1126/science.7079771. [DOI] [PubMed] [Google Scholar]
  10. Dietzel I., Heinemann U., Hofmeier G., Lux H. D. Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp Brain Res. 1980;40(4):432–439. doi: 10.1007/BF00236151. [DOI] [PubMed] [Google Scholar]
  11. Dowling J. E., Ripps H. Potassium and retinal sensitivity. Brain Res. 1976 May 14;107(3):617–622. doi: 10.1016/0006-8993(76)90149-9. [DOI] [PubMed] [Google Scholar]
  12. Edwards C. The selectivity of ion channels in nerve and muscle. Neuroscience. 1982 Jun;7(6):1335–1366. doi: 10.1016/0306-4522(82)90249-4. [DOI] [PubMed] [Google Scholar]
  13. Eisner D. A., Lederer W. J. Characterization of the electrogenic sodium pump in cardiac Purkinje fibres. J Physiol. 1980 Jun;303:441–474. doi: 10.1113/jphysiol.1980.sp013298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ellory J. C., Flatman P. W., Stewart G. W. Inhibition of human red cell sodium and potassium transport by divalent cations. J Physiol. 1983 Jul;340:1–17. doi: 10.1113/jphysiol.1983.sp014746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fain G. L., Quandt F. N. The effects of tetraethylammonium and cobalt ions on responses to extrinsic current in toad rods. J Physiol. 1980 Jun;303:515–533. doi: 10.1113/jphysiol.1980.sp013301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frank R. N., Goldsmith T. H. Effects of cardiac glycosides on electrical activity in the isolated retina of the frog. J Gen Physiol. 1967 Jul;50(6):1585–1606. doi: 10.1085/jgp.50.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fujimoto M., Tomita T. Reconstruction of the slow PIII from the rod potential. Invest Ophthalmol Vis Sci. 1979 Oct;18(10):1091–1093. [PubMed] [Google Scholar]
  18. Gadsby D. C. Activation of electrogenic Na+/K+ exchange by extracellular K+ in canine cardiac Purkinje fibers. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4035–4039. doi: 10.1073/pnas.77.7.4035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Galvan M., Bruggencate G. T., Senekowitsch R. The effects of neuronal stimulation and ouabain upon extracellular K+ and Ca2+ levels in rat isolated sympathetic ganglia. Brain Res. 1979 Jan 19;160(3):544–548. doi: 10.1016/0006-8993(79)91084-9. [DOI] [PubMed] [Google Scholar]
  20. Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gardner-Medwin A. R. A study of the mechanisms by which potassium moves through brain tissue in the rat. J Physiol. 1983 Feb;335:353–374. doi: 10.1113/jphysiol.1983.sp014539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gardner-Medwin A. R., Coles J. A., Tsacopoulos M. Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone. Brain Res. 1981 Mar 30;209(2):452–457. doi: 10.1016/0006-8993(81)90169-4. [DOI] [PubMed] [Google Scholar]
  23. Gardner-Medwin A. R., Nicholson C. Changes of extracellular potassium activity induced by electric current through brain tissue in the rat. J Physiol. 1983 Feb;335:375–392. doi: 10.1113/jphysiol.1983.sp014540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Glitsch H. G. Activation of the electrogenic sodium pump in guinea-pig auricles by internal sodium ions. J Physiol. 1972 Feb;220(3):565–582. doi: 10.1113/jphysiol.1972.sp009723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Glynn I. M., Karlish S. J. The sodium pump. Annu Rev Physiol. 1975;37:13–55. doi: 10.1146/annurev.ph.37.030175.000305. [DOI] [PubMed] [Google Scholar]
  26. Griff E. R., Steinberg R. H. Changes in apical [K+] produce delayed basal membrane responses of the retinal pigment epithelium in the gecko. J Gen Physiol. 1984 Feb;83(2):193–211. doi: 10.1085/jgp.83.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hagins W. A., Penn R. D., Yoshikami S. Dark current and photocurrent in retinal rods. Biophys J. 1970 May;10(5):380–412. doi: 10.1016/S0006-3495(70)86308-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hagiwara S., Miyazaki S., Rosenthal N. P. Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J Gen Physiol. 1976 Jun;67(6):621–638. doi: 10.1085/jgp.67.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hagiwara S., Takahashi K. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J Membr Biol. 1974;18(1):61–80. doi: 10.1007/BF01870103. [DOI] [PubMed] [Google Scholar]
  30. Heinemann U., Lux H. D. Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res. 1977 Jan 21;120(2):231–249. doi: 10.1016/0006-8993(77)90903-9. [DOI] [PubMed] [Google Scholar]
  31. Heinemann U., Lux H. D. Undershoots following stimulus-induced rises of extracellular potassium concentration in cerebral cortex of cat. Brain Res. 1975 Jul 25;93(1):63–76. doi: 10.1016/0006-8993(75)90286-3. [DOI] [PubMed] [Google Scholar]
  32. Hille B. The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J Gen Physiol. 1967 May;50(5):1287–1302. doi: 10.1085/jgp.50.5.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Karwoski C. J., Proenza L. M. Light-evoked changes in extracellular potassium concentration in munpuppy retina. Brain Res. 1978 Mar 10;142(3):515–530. doi: 10.1016/0006-8993(78)90913-7. [DOI] [PubMed] [Google Scholar]
  34. Kimble E. A., Svoboda R. A., Ostroy S. E. Oxygen consumption and ATP changes of the vertebrate photoreceptor. Exp Eye Res. 1980 Sep;31(3):271–288. doi: 10.1016/s0014-4835(80)80037-6. [DOI] [PubMed] [Google Scholar]
  35. Kline R. P., Kupersmith J. Effects of extracellular potassium accumulation and sodium pump activation on automatic canine Purkinje fibres. J Physiol. 1982 Mar;324:507–533. doi: 10.1113/jphysiol.1982.sp014127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kline R. P., Ripps H., Dowling J. E. Generation of b-wave currents in the skate retina. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5727–5731. doi: 10.1073/pnas.75.11.5727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kunze D. L. Rate-dependent changes in extracellular potassium in the rabbit atrium. Circ Res. 1977 Jul;41(1):122–127. doi: 10.1161/01.res.41.1.122. [DOI] [PubMed] [Google Scholar]
  38. Martin G., Morad M. Activity-induced potassium accumulation and its uptake in frog ventricular muscle. J Physiol. 1982 Jul;328:205–227. doi: 10.1113/jphysiol.1982.sp014260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Matsuura T., Miller W. H., Tomita T. Cone-specific c-wave in the turtle retina. Vision Res. 1978;18(7):767–775. doi: 10.1016/0042-6989(78)90115-3. [DOI] [PubMed] [Google Scholar]
  40. Meves H., Pichon Y. The effect of internal and external 4-aminopyridine on the potassium currents in intracellularly perfused squid giant axons. J Physiol. 1977 Jun;268(2):511–532. doi: 10.1113/jphysiol.1977.sp011869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Miller S. S., Steinberg R. H. Passive ionic properties of frog retinal pigment epithelium. J Membr Biol. 1977 Sep 15;36(4):337–372. doi: 10.1007/BF01868158. [DOI] [PubMed] [Google Scholar]
  42. Miller S. S., Steinberg R. H. Potassium modulation of taurine transport across the frog retinal pigment epithelium. J Gen Physiol. 1979 Aug;74(2):237–259. doi: 10.1085/jgp.74.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
  44. Neher E., Lux H. D. Rapid changes of potassium concentration at the outer surface of exposed single neurons during membrane current flow. J Gen Physiol. 1973 Mar;61(3):385–399. doi: 10.1085/jgp.61.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Nelson M. T., Blaustein M. P. Properties of sodium pumps in internally perfused barnacle muscle fibers. J Gen Physiol. 1980 Feb;75(2):183–206. doi: 10.1085/jgp.75.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Nicholson C., ten Bruggencate G., Stöckle H., Steinberg R. Calcium and potassium changes in extracellular microenvironment of cat cerebellar cortex. J Neurophysiol. 1978 Jul;41(4):1026–1039. doi: 10.1152/jn.1978.41.4.1026. [DOI] [PubMed] [Google Scholar]
  47. Oakley B., 2nd Effects of maintained illumination upon [K+]0 in the subretinal space of the isolated retina of the toad. Vision Res. 1983;23(11):1325–1337. doi: 10.1016/0042-6989(83)90108-6. [DOI] [PubMed] [Google Scholar]
  48. Oakley B., 2nd, Flaming D. G., Brown K. T. Effects of the rod receptor potential upon retinal extracellular potassium concentration. J Gen Physiol. 1979 Dec;74(6):713–737. doi: 10.1085/jgp.74.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Oakley B., 2nd, Green D. G. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol. 1976 Sep;39(5):1117–1133. doi: 10.1152/jn.1976.39.5.1117. [DOI] [PubMed] [Google Scholar]
  50. Oakley B., 2nd, Steinberg R. H. Effects of maintained illumination upon [K+]0 in the subretinal space of the frog retina. Vision Res. 1982;22(7):767–773. doi: 10.1016/0042-6989(82)90007-4. [DOI] [PubMed] [Google Scholar]
  51. Orkand R. K., Nicholls J. G., Kuffler S. W. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):788–806. doi: 10.1152/jn.1966.29.4.788. [DOI] [PubMed] [Google Scholar]
  52. Ostwald T. J., Steinberg R. H. Localization of frog retinal pigment epithelium Na+-K+ ATPase. Exp Eye Res. 1980 Sep;31(3):351–360. doi: 10.1016/s0014-4835(80)80043-1. [DOI] [PubMed] [Google Scholar]
  53. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  54. Saito Y., Wright E. M. Kinetics of the sodium pump in the frog choroid plexus. J Physiol. 1982 Jul;328:229–243. doi: 10.1113/jphysiol.1982.sp014261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Steinberg R. H., Oakley B., 2nd, Niemeyer G. Light-evoked changes in [K+]0 in retina of intact cat eye. J Neurophysiol. 1980 Nov;44(5):897–921. doi: 10.1152/jn.1980.44.5.897. [DOI] [PubMed] [Google Scholar]
  56. Stirling C. E., Lee A. [3H]ouabain autoradiography of frog retina. J Cell Biol. 1980 May;85(2):313–324. doi: 10.1083/jcb.85.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Szamier R. B., Ripps H., Chappell R. L. Changes in ERG b-wave and Müller cell structure induced by alpha-aminoadipic acid. Neurosci Lett. 1981 Feb 6;21(3):307–312. doi: 10.1016/0304-3940(81)90222-6. [DOI] [PubMed] [Google Scholar]
  58. Thomas R. C. Intracellular sodium activity and the sodium pump in snail neurones. J Physiol. 1972 Jan;220(1):55–71. doi: 10.1113/jphysiol.1972.sp009694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Tomita T. Electrophysiological studies of retinal cell function. Invest Ophthalmol. 1976 Mar;15(3):171–187. [PubMed] [Google Scholar]
  60. Torre V. The contribution of the electrogenic sodium-potassium pump to the electrical activity of toad rods. J Physiol. 1982 Dec;333:315–341. doi: 10.1113/jphysiol.1982.sp014456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Varon S. S., Somjen G. G. Neuron-glia interactions. Neurosci Res Program Bull. 1979 Feb;17(1):1–239. [PubMed] [Google Scholar]
  62. Welinder E., Textorius O., Nilsson S. E. Effects of intravitreally injected DL-alpha-aminoadipic acid on the c-wave of the D.C.-recorded electroretinogram in albino rabbits. Invest Ophthalmol Vis Sci. 1982 Aug;23(2):240–245. [PubMed] [Google Scholar]
  63. Wise W. M., Kurey M. J., Baum G. Direct potentiometric measurement of potassium in blood serum with liquid ion-exchange electrode. Clin Chem. 1970 Feb;16(2):103–106. [PubMed] [Google Scholar]
  64. Witkovsky P., Dudek F. E., Ripps H. Slow PIII component of the carp electroretinogram. J Gen Physiol. 1975 Feb;65(2):119–134. doi: 10.1085/jgp.65.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Wuhrmann P., Ineichen H., Riesen-Willi U., Lezzi M. Change in nuclear potassium electrochemical activity and puffing of potassium-sensitive salivary chromosome regions during Chironomus development. Proc Natl Acad Sci U S A. 1979 Feb;76(2):806–808. doi: 10.1073/pnas.76.2.806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Zeuthen T., Wright E. M. Epithelial potassium transport: tracer and electrophysiological studies in choroid plexus. J Membr Biol. 1981;60(2):105–128. doi: 10.1007/BF01870414. [DOI] [PubMed] [Google Scholar]
  67. Zimmerman R. P., Corfman T. P. A comparison of the effects of isomers of alpha-aminoadipic acid and 2-amino-4-phosphonobutyric acid on the light response of the müller glial cell and the electroretinogram. Neuroscience. 1984 May;12(1):77–84. doi: 10.1016/0306-4522(84)90139-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES