Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1984 Oct 1;84(4):505–534. doi: 10.1085/jgp.84.4.505

Statistical properties of single sodium channels

PMCID: PMC2228752  PMID: 6094703

Abstract

Single channel currents were obtained from voltage-activated sodium channels in outside-out patches of tissue-cultured GH3 cells, a clonal line from rat pituitary gland. In membrane patches where the probability of overlapping openings was low, the open time histograms were well fit by a single exponential. Most analysis was done on a patch with exactly one channel. We found no evidence for multiple open states at -25 and -40 mV, since open times, burst durations, and autocorrelation functions were time independent. Amplitude histograms showed no evidence of multiple conductance levels. We fit the gating with 25 different time-homogeneous Markov chain models having up to five states, using a maximum likelihood procedure to estimate the rate constants. For selected models, this procedure yielded excellent predictions for open time, closed time, and first latency density functions, as well as the probability of the channel being open after a step depolarization, the burst duration distribution, autocorrelation, and the distribution of number of openings per record. The models were compared statistically using likelihood ratio tests and Akaike's information criterion. Acceptable models allowed inactivation from closed states, as well as from the open state. Among the models eliminated as unacceptable by this survey were the Hodgkin-Huxley model and any model requiring a channel to open before inactivating.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich R. W., Corey D. P., Stevens C. F. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983 Dec 1;306(5942):436–441. doi: 10.1038/306436a0. [DOI] [PubMed] [Google Scholar]
  2. Armstrong C. M., Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 1977 Nov;70(5):567–590. doi: 10.1085/jgp.70.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong C. M., Gilly W. F. Fast and slow steps in the activation of sodium channels. J Gen Physiol. 1979 Dec;74(6):691–711. doi: 10.1085/jgp.74.6.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Armstrong C. M. Sodium channels and gating currents. Physiol Rev. 1981 Jul;61(3):644–683. doi: 10.1152/physrev.1981.61.3.644. [DOI] [PubMed] [Google Scholar]
  5. Auerbach A., Sachs F. Flickering of a nicotinic ion channel to a subconductance state. Biophys J. 1983 Apr;42(1):1–10. doi: 10.1016/S0006-3495(83)84362-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bezanilla F., Taylor R. E. Temperature effects on gating currents in the squid giant axon. Biophys J. 1978 Sep;23(3):479–484. doi: 10.1016/S0006-3495(78)85464-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brodwick M. S., Eaton D. C. Chemical modification of excitable membranes. Prog Clin Biol Res. 1982;79:51–72. [PubMed] [Google Scholar]
  9. Chandler W. K., Meves H. Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J Physiol. 1970 Dec;211(3):653–678. doi: 10.1113/jphysiol.1970.sp009298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chiu S. Y. Inactivation of sodium channels: second order kinetics in myelinated nerve. J Physiol. 1977 Dec;273(3):573–596. doi: 10.1113/jphysiol.1977.sp012111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Colquhoun D., Hawkes A. G. On the stochastic properties of single ion channels. Proc R Soc Lond B Biol Sci. 1981 Mar 6;211(1183):205–235. doi: 10.1098/rspb.1981.0003. [DOI] [PubMed] [Google Scholar]
  12. Colquhoun D., Sakmann B. Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature. 1981 Dec 3;294(5840):464–466. doi: 10.1038/294464a0. [DOI] [PubMed] [Google Scholar]
  13. Conti F., Neumcke B., Nonner W., Stämpfli R. Conductance fluctuations from the inactivation process of sodium channels in myelinated nerve fibres. J Physiol. 1980 Nov;308:217–239. doi: 10.1113/jphysiol.1980.sp013469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fishman H. M., Leuchtag H. R., Moore L. E. Fluctuation and linear analysis of Na-current kinetics in squid axon. Biophys J. 1983 Sep;43(3):293–307. doi: 10.1016/S0006-3495(83)84353-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. French R. J., Horn R. Sodium channel gating: models, mimics, and modifiers. Annu Rev Biophys Bioeng. 1983;12:319–356. doi: 10.1146/annurev.bb.12.060183.001535. [DOI] [PubMed] [Google Scholar]
  16. Fukushima Y. Identification and kinetic properties of the current through a single Na+ channel. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1274–1277. doi: 10.1073/pnas.78.2.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Greeff N. G., Keynes R. D., Van Helden D. F. Fractionation of the asymmetry current in the squid giant axon into inactivating and non-inactivating components. Proc R Soc Lond B Biol Sci. 1982 Jun 22;215(1200):375–389. doi: 10.1098/rspb.1982.0048. [DOI] [PubMed] [Google Scholar]
  18. Hagiwara S., Ohmori H. Studies of single calcium channel currents in rat clonal pituitary cells. J Physiol. 1983 Mar;336:649–661. doi: 10.1113/jphysiol.1983.sp014603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  20. Horn R., Lange K. Estimating kinetic constants from single channel data. Biophys J. 1983 Aug;43(2):207–223. doi: 10.1016/S0006-3495(83)84341-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Horn R., Vandenberg C. A., Lange K. Statistical analysis of single sodium channels. Effects of N-bromoacetamide. Biophys J. 1984 Jan;45(1):323–335. doi: 10.1016/S0006-3495(84)84158-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Huang L. Y., Moran N., Ehrenstein G. Gating kinetics of batrachotoxin-modified sodium channels in neuroblastoma cells determined from single-channel measurements. Biophys J. 1984 Jan;45(1):313–322. doi: 10.1016/S0006-3495(84)84157-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jackson M. B., Wong B. S., Morris C. E., Lecar H., Christian C. N. Successive openings of the same acetylcholine receptor channel are correlated in open time. Biophys J. 1983 Apr;42(1):109–114. doi: 10.1016/S0006-3495(83)84375-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagy K., Kiss T., Hof D. Single Na channels in mouse neuroblastoma cell membrane. Indications for two open states. Pflugers Arch. 1983 Dec;399(4):302–308. doi: 10.1007/BF00652757. [DOI] [PubMed] [Google Scholar]
  25. Neher E., Steinbach J. H. Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J Physiol. 1978 Apr;277:153–176. doi: 10.1113/jphysiol.1978.sp012267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Neumcke B., Nonner W., Stämpfli R. Asymmetrical displacement current and its relation with the activation of sodium current in the membrane of frog myelinated nerve. Pflugers Arch. 1976 Jun 22;363(3):193–203. doi: 10.1007/BF00594601. [DOI] [PubMed] [Google Scholar]
  27. Patlak J., Horn R. Effect of N-bromoacetamide on single sodium channel currents in excised membrane patches. J Gen Physiol. 1982 Mar;79(3):333–351. doi: 10.1085/jgp.79.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Quandt F. N., Narahashi T. Modification of single Na+ channels by batrachotoxin. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6732–6736. doi: 10.1073/pnas.79.21.6732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rubinson K. A. The sodium currents of nerve under voltage clamp as heterogeneous kinetics. A model that is consistent with possible kinetic behavior. Biophys Chem. 1982 Jun;15(3):245–262. doi: 10.1016/0301-4622(82)80008-2. [DOI] [PubMed] [Google Scholar]
  30. Sigworth F. J. Covariance of nonstationary sodium current fluctuations at the node of Ranvier. Biophys J. 1981 Apr;34(1):111–133. doi: 10.1016/S0006-3495(81)84840-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vandenberg C. A., Horn R. Inactivation viewed through single sodium channels. J Gen Physiol. 1984 Oct;84(4):535–564. doi: 10.1085/jgp.84.4.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yeh J. Z. A pharmacological approach to the structure of the Na channel in squid axon. Prog Clin Biol Res. 1982;79:17–49. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES