Skip to main content
Molecular Medicine logoLink to Molecular Medicine
. 1997 Aug;3(8):553–564.

TNF-alpha opens a paracellular route for HIV-1 invasion across the blood-brain barrier.

M Fiala 1, D J Looney 1, M Stins 1, D D Way 1, L Zhang 1, X Gan 1, F Chiappelli 1, E S Schweitzer 1, P Shapshak 1, M Weinand 1, M C Graves 1, M Witte 1, K S Kim 1
PMCID: PMC2230176  PMID: 9307983

Abstract

BACKGROUND: HIV-1 invades the central nervous system early after infection when macrophage infiltration of the brain is low but myelin pallor is suggestive of blood-brain-barrier damage. High-level plasma viremia is a likely source of brain infection. To understand the invasion route, we investigated virus penetration across in vitro models with contrasting paracellular permeability subjected to TNF-alpha. MATERIALS AND METHODS: Blood-brain-barrier models constructed with human brain microvascular endothelial cells, fetal astrocytes, and collagen I or fibronectin matrix responded in a dose-related fashion to cytokines and ligands modulating paracellular permeability and cell migration. Virus penetration was measured by infectious and quantitative HIV-1 RNA assays. Barrier permeability was determined using inulin or dextran. RESULTS: Cell-free HIV-1 was retained by the blood-brain barrier with close to 100% efficiency. TNF-alpha increased virus penetration by a paracellular route in a dose-dependent manner proportionately to basal permeability. Brain endothelial cells were the main barrier to HIV-1. HIV-1 with monocytes attracted monocyte migration into the brain chamber. CONCLUSIONS: Early after the infection, the blood-brain barrier protects the brain from HIV-1. Immune mediators, such as TNF-alpha, open a paracellular route for the virus into the brain. The virus and viral proteins stimulate brain microglia and macrophages to attract monocytes into the brain. Infiltrating macrophages cause progression of HIV-1 encephalitis.

Full text

PDF
553

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adson A., Raub T. J., Burton P. S., Barsuhn C. L., Hilgers A. R., Audus K. L., Ho N. F. Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J Pharm Sci. 1994 Nov;83(11):1529–1536. doi: 10.1002/jps.2600831103. [DOI] [PubMed] [Google Scholar]
  2. Barlow K. L., Tosswill J. H., Clewley J. P. Analysis and genotyping of PCR products of the Amplicor HIV-1 kit. J Virol Methods. 1995 Mar;52(1-2):65–74. doi: 10.1016/0166-0934(94)00139-8. [DOI] [PubMed] [Google Scholar]
  3. Bomsel M. Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat Med. 1997 Jan;3(1):42–47. doi: 10.1038/nm0197-42. [DOI] [PubMed] [Google Scholar]
  4. Brightman M. W., Ishihara S., Chang L. Penetration of solutes, viruses, and cells across the blood-brain barrier. Curr Top Microbiol Immunol. 1995;202:63–78. doi: 10.1007/978-3-642-79657-9_5. [DOI] [PubMed] [Google Scholar]
  5. Card J. P., Rinaman L., Lynn R. B., Lee B. H., Meade R. P., Miselis R. R., Enquist L. W. Pseudorabies virus infection of the rat central nervous system: ultrastructural characterization of viral replication, transport, and pathogenesis. J Neurosci. 1993 Jun;13(6):2515–2539. doi: 10.1523/JNEUROSCI.13-06-02515.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carlos T. M., Harlan J. M. Leukocyte-endothelial adhesion molecules. Blood. 1994 Oct 1;84(7):2068–2101. [PubMed] [Google Scholar]
  7. Dehouck M. P., Méresse S., Delorme P., Fruchart J. C., Cecchelli R. An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem. 1990 May;54(5):1798–1801. doi: 10.1111/j.1471-4159.1990.tb01236.x. [DOI] [PubMed] [Google Scholar]
  8. Deli M. A., Descamps L., Dehouck M. P., Cecchelli R., Joó F., Abrahám C. S., Torpier G. Exposure of tumor necrosis factor-alpha to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin. J Neurosci Res. 1995 Aug 15;41(6):717–726. doi: 10.1002/jnr.490410602. [DOI] [PubMed] [Google Scholar]
  9. FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Falangola M. F., Hanly A., Galvao-Castro B., Petito C. K. HIV infection of human choroid plexus: a possible mechanism of viral entry into the CNS. J Neuropathol Exp Neurol. 1995 Jul;54(4):497–503. doi: 10.1097/00005072-199507000-00003. [DOI] [PubMed] [Google Scholar]
  11. Fiala A. M., Gan X. H., Newton T., Chiappelli F., Shapshak P., Kermani V., Kung M. A., Diagne A., Martinez O., Way D. Divergent effects of cocaine on cytokine production by lymphocytes and monocyte/macrophages: HIV-1 enhancement by cocaine within the blood-brain barrier. Adv Exp Med Biol. 1996;402:145–156. [PubMed] [Google Scholar]
  12. Fiala M., Rhodes R. H., Shapshak P., Nagano I., Martinez-Maza O., Diagne A., Baldwin G., Graves M. Regulation of HIV-1 infection in astrocytes: expression of Nef, TNF-alpha and IL-6 is enhanced in coculture of astrocytes with macrophages. J Neurovirol. 1996 Jun;2(3):158–166. doi: 10.3109/13550289609146878. [DOI] [PubMed] [Google Scholar]
  13. Fiala M., Singer E. J., Graves M. C., Tourtellotte W. W., Stewart J. A., Schable C. A., Rhodes R. H., Vinters H. V. AIDS dementia complex complicated by cytomegalovirus encephalopathy. J Neurol. 1993;240(4):223–231. doi: 10.1007/BF00818709. [DOI] [PubMed] [Google Scholar]
  14. Fogelman A. M., Elahi F., Sykes K., Van Lenten B. J., Territo M. C., Berliner J. A. Modification of the Recalde method for the isolation of human monocytes. J Lipid Res. 1988 Sep;29(9):1243–1247. [PubMed] [Google Scholar]
  15. Folks T., Benn S., Rabson A., Theodore T., Hoggan M. D., Martin M., Lightfoote M., Sell K. Characterization of a continuous T-cell line susceptible to the cytopathic effects of the acquired immunodeficiency syndrome (AIDS)-associated retrovirus. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4539–4543. doi: 10.1073/pnas.82.13.4539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gray F., Scaravilli F., Everall I., Chretien F., An S., Boche D., Adle-Biassette H., Wingertsmann L., Durigon M., Hurtrel B. Neuropathology of early HIV-1 infection. Brain Pathol. 1996 Jan;6(1):1–15. doi: 10.1111/j.1750-3639.1996.tb00775.x. [DOI] [PubMed] [Google Scholar]
  17. Khadir A., Coutlée F., Saint-Antoine P., Olivier C., Voyer H., Kessous-Elbaz A. Clinical evaluation of Amplicor HIV-1 test for detection of human immunodeficiency virus type 1 proviral DNA in peripheral blood mononuclear cells. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Jul 1;9(3):257–263. [PubMed] [Google Scholar]
  18. Kim K. S., Wass C. A., Cross A. S., Opal S. M. Modulation of blood-brain barrier permeability by tumor necrosis factor and antibody to tumor necrosis factor in the rat. Lymphokine Cytokine Res. 1992 Dec;11(6):293–298. [PubMed] [Google Scholar]
  19. Koup R. A., Safrit J. T., Cao Y., Andrews C. A., McLeod G., Borkowsky W., Farthing C., Ho D. D. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994 Jul;68(7):4650–4655. doi: 10.1128/jvi.68.7.4650-4655.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koyanagi Y., Miles S., Mitsuyasu R. T., Merrill J. E., Vinters H. V., Chen I. S. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science. 1987 May 15;236(4803):819–822. doi: 10.1126/science.3646751. [DOI] [PubMed] [Google Scholar]
  21. Lane J. H., Sasseville V. G., Smith M. O., Vogel P., Pauley D. R., Heyes M. P., Lackner A. A. Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation. J Neurovirol. 1996 Dec;2(6):423–432. doi: 10.3109/13550289609146909. [DOI] [PubMed] [Google Scholar]
  22. Lum H., Malik A. B. Regulation of vascular endothelial barrier function. Am J Physiol. 1994 Sep;267(3 Pt 1):L223–L241. doi: 10.1152/ajplung.1994.267.3.L223. [DOI] [PubMed] [Google Scholar]
  23. Mankowski J. L., Spelman J. P., Ressetar H. G., Strandberg J. D., Laterra J., Carter D. L., Clements J. E., Zink M. C. Neurovirulent simian immunodeficiency virus replicates productively in endothelial cells of the central nervous system in vivo and in vitro. J Virol. 1994 Dec;68(12):8202–8208. doi: 10.1128/jvi.68.12.8202-8208.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Massari F. E., Poli G., Schnittman S. M., Psallidopoulos M. C., Davey V., Fauci A. S. In vivo T lymphocyte origin of macrophage-tropic strains of HIV. Role of monocytes during in vitro isolation and in vivo infection. J Immunol. 1990 Jun 15;144(12):4628–4632. [PubMed] [Google Scholar]
  25. Massari F. E., Poli G., Schnittman S. M., Psallidopoulos M. C., Davey V., Fauci A. S. In vivo T lymphocyte origin of macrophage-tropic strains of HIV. Role of monocytes during in vitro isolation and in vivo infection. J Immunol. 1990 Jun 15;144(12):4628–4632. [PubMed] [Google Scholar]
  26. Moses A. V., Bloom F. E., Pauza C. D., Nelson J. A. Human immunodeficiency virus infection of human brain capillary endothelial cells occurs via a CD4/galactosylceramide-independent mechanism. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10474–10478. doi: 10.1073/pnas.90.22.10474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pardridge W. M., Boado R. J., Farrell C. R. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem. 1990 Oct 15;265(29):18035–18040. [PubMed] [Google Scholar]
  28. Peluso R., Haase A., Stowring L., Edwards M., Ventura P. A Trojan Horse mechanism for the spread of visna virus in monocytes. Virology. 1985 Nov;147(1):231–236. doi: 10.1016/0042-6822(85)90246-6. [DOI] [PubMed] [Google Scholar]
  29. Persidsky Y., Stins M., Way D., Witte M. H., Weinand M., Kim K. S., Bock P., Gendelman H. E., Fiala M. A model for monocyte migration through the blood-brain barrier during HIV-1 encephalitis. J Immunol. 1997 Apr 1;158(7):3499–3510. [PubMed] [Google Scholar]
  30. Piatak M., Jr, Saag M. S., Yang L. C., Clark S. J., Kappes J. C., Luk K. C., Hahn B. H., Shaw G. M., Lifson J. D. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science. 1993 Mar 19;259(5102):1749–1754. doi: 10.1126/science.8096089. [DOI] [PubMed] [Google Scholar]
  31. Poland S. D., Rice G. P., Dekaban G. A. HIV-1 infection of human brain-derived microvascular endothelial cells in vitro. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Apr 15;8(5):437–445. doi: 10.1097/00042560-199504120-00002. [DOI] [PubMed] [Google Scholar]
  32. Power C., Kong P. A., Crawford T. O., Wesselingh S., Glass J. D., McArthur J. C., Trapp B. D. Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alterations of the blood-brain barrier. Ann Neurol. 1993 Sep;34(3):339–350. doi: 10.1002/ana.410340307. [DOI] [PubMed] [Google Scholar]
  33. Rubin L. L., Hall D. E., Porter S., Barbu K., Cannon C., Horner H. C., Janatpour M., Liaw C. W., Manning K., Morales J. A cell culture model of the blood-brain barrier. J Cell Biol. 1991 Dec;115(6):1725–1735. doi: 10.1083/jcb.115.6.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sanovich E., Bartus R. T., Friden P. M., Dean R. L., Le H. Q., Brightman M. W. Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7. Brain Res. 1995 Dec 24;705(1-2):125–135. doi: 10.1016/0006-8993(95)01143-9. [DOI] [PubMed] [Google Scholar]
  35. Schmidtmayerova H., Nottet H. S., Nuovo G., Raabe T., Flanagan C. R., Dubrovsky L., Gendelman H. E., Cerami A., Bukrinsky M., Sherry B. Human immunodeficiency virus type 1 infection alters chemokine beta peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):700–704. doi: 10.1073/pnas.93.2.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Singer E. J., Syndulko K., Fahy-Chandon B., Schmid P., Conrad A., Tourtellotte W. W. Intrathecal IgG synthesis and albumin leakage are increased in subjects with HIV-1 neurologic disease. J Acquir Immune Defic Syndr. 1994 Mar;7(3):265–271. [PubMed] [Google Scholar]
  37. Smith M. O., Heyes M. P., Lackner A. A. Early intrathecal events in rhesus macaques (Macaca mulatta) infected with pathogenic or nonpathogenic molecular clones of simian immunodeficiency virus. Lab Invest. 1995 May;72(5):547–558. [PubMed] [Google Scholar]
  38. Stins M. F., Prasadarao N. V., Ibric L., Wass C. A., Luckett P., Kim K. S. Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. Am J Pathol. 1994 Nov;145(5):1228–1236. [PMC free article] [PubMed] [Google Scholar]
  39. Tornatore C., Meyers K., Atwood W., Conant K., Major E. Temporal patterns of human immunodeficiency virus type 1 transcripts in human fetal astrocytes. J Virol. 1994 Jan;68(1):93–102. doi: 10.1128/jvi.68.1.93-102.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tyor W. R., Glass J. D., Griffin J. W., Becker P. S., McArthur J. C., Bezman L., Griffin D. E. Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann Neurol. 1992 Apr;31(4):349–360. doi: 10.1002/ana.410310402. [DOI] [PubMed] [Google Scholar]
  41. Vitkovic L., da Cunha A., Tyor W. R. Cytokine expression and pathogenesis in AIDS brain. Res Publ Assoc Res Nerv Ment Dis. 1994;72:203–222. [PubMed] [Google Scholar]
  42. Way D. L., Witte M. H., Fiala M., Ramirez G., Nagle R. B., Bernas M. J., Dictor M., Borgs P., Witte C. L. Endothelial transdifferentiated phenotype and cell-cycle kinetics of AIDS-associated Kaposi sarcoma cells. Lymphology. 1993 Jun;26(2):79–89. [PubMed] [Google Scholar]
  43. Weinand M. E., Wyler A. R., Richey E. T., Phillips B. B., Somes G. W. Long-term ictal monitoring with subdural strip electrodes: prognostic factors for selecting temporal lobectomy candidates. J Neurosurg. 1992 Jul;77(1):20–28. doi: 10.3171/jns.1992.77.1.0020. [DOI] [PubMed] [Google Scholar]
  44. Wesselingh S. L., Glass J., McArthur J. C., Griffin J. W., Griffin D. E. Cytokine dysregulation in HIV-associated neurological disease. Adv Neuroimmunol. 1994;4(3):199–206. doi: 10.1016/s0960-5428(06)80258-5. [DOI] [PubMed] [Google Scholar]
  45. Williams K. C., Hickey W. F. Traffic of hematogenous cells through the central nervous system. Curr Top Microbiol Immunol. 1995;202:221–245. doi: 10.1007/978-3-642-79657-9_15. [DOI] [PubMed] [Google Scholar]
  46. Williams K. C., Hickey W. F. Traffic of lymphocytes into the CNS during inflammation and HIV infection. J NeuroAIDS. 1996;1(1):31–55. doi: 10.1300/j128v01n01_02. [DOI] [PubMed] [Google Scholar]
  47. Wilt S. G., Milward E., Zhou J. M., Nagasato K., Patton H., Rusten R., Griffin D. E., O'Connor M., Dubois-Dalcq M. In vitro evidence for a dual role of tumor necrosis factor-alpha in human immunodeficiency virus type 1 encephalopathy. Ann Neurol. 1995 Mar;37(3):381–394. doi: 10.1002/ana.410370315. [DOI] [PubMed] [Google Scholar]
  48. Yoshioka M., Shapshak P., Srivastava A. K., Stewart R. V., Nelson S. J., Bradley W. G., Berger J. R., Rhodes R. H., Sun N. C., Nakamura S. Expression of HIV-1 and interleukin-6 in lumbosacral dorsal root ganglia of patients with AIDS. Neurology. 1994 Jun;44(6):1120–1130. doi: 10.1212/wnl.44.6.1120. [DOI] [PubMed] [Google Scholar]
  49. de Vries H. E., Blom-Roosemalen M. C., van Oosten M., de Boer A. G., van Berkel T. J., Breimer D. D., Kuiper J. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol. 1996 Jan;64(1):37–43. doi: 10.1016/0165-5728(95)00148-4. [DOI] [PubMed] [Google Scholar]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ

RESOURCES