Skip to main content
Proceedings of the AMIA Symposium logoLink to Proceedings of the AMIA Symposium
. 1999:246–250.

Evaluating variable selection methods for diagnosis of myocardial infarction.

S Dreiseitl 1, L Ohno-Machado 1, S Vinterbo 1
PMCID: PMC2232647  PMID: 10566358

Abstract

This paper evaluates the variable selection performed by several machine-learning techniques on a myocardial infarction data set. The focus of this work is to determine which of 43 input variables are considered relevant for prediction of myocardial infarction. The algorithms investigated were logistic regression (with stepwise, forward, and backward selection), backpropagation for multilayer perceptrons (input relevance determination), Bayesian neural networks (automatic relevance determination), and rough sets. An independent method (self-organizing maps) was then used to evaluate and visualize the different subsets of predictor variables. Results show good agreement on some predictors, but also variability among different methods; only one variable was selected by all models.

Full text

PDF
246

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Glass J. O., Reddick W. E. Hybrid artificial neural network segmentation and classification of dynamic contrast-enhanced MR imaging (DEMRI) of osteosarcoma. Magn Reson Imaging. 1998 Nov;16(9):1075–1083. doi: 10.1016/s0730-725x(98)00137-4. [DOI] [PubMed] [Google Scholar]
  2. Hanley J. A., McNeil B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982 Apr;143(1):29–36. doi: 10.1148/radiology.143.1.7063747. [DOI] [PubMed] [Google Scholar]
  3. Henson D. B., Spenceley S. E., Bull D. R. Artificial neural network analysis of noisy visual field data in glaucoma. Artif Intell Med. 1997 Jun;10(2):99–113. doi: 10.1016/s0933-3657(97)00388-6. [DOI] [PubMed] [Google Scholar]
  4. Kennedy R. L., Burton A. M., Fraser H. S., McStay L. N., Harrison R. F. Early diagnosis of acute myocardial infarction using clinical and electrocardiographic data at presentation: derivation and evaluation of logistic regression models. Eur Heart J. 1996 Aug;17(8):1181–1191. doi: 10.1093/oxfordjournals.eurheartj.a015035. [DOI] [PubMed] [Google Scholar]
  5. Lehtinen J. C., Forsström J., Koskinen P., Penttilä T. A., Järvi T., Anttila L. Visualization of clinical data with neural networks, case study: polycystic ovary syndrome. Int J Med Inform. 1997 Apr;44(2):145–155. doi: 10.1016/S1386-5056(96)01265-8. [DOI] [PubMed] [Google Scholar]
  6. Wakulicz-Deja A., Paszek P. Diagnose progressive encephalopathy applying the rough set theory. Int J Med Inform. 1997 Sep;46(2):119–127. doi: 10.1016/s1386-5056(97)00061-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the AMIA Symposium are provided here courtesy of American Medical Informatics Association

RESOURCES