Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Apr;62(4):1167–1174. doi: 10.1073/pnas.62.4.1167

LOCATION OF SINGLE-STRAND INTERRUPTIONS IN THE DNA OF BACTERIOPHAGE T5+

Hermann Bujard 1,*
PMCID: PMC223629  PMID: 5256414

Abstract

The positions of three single-strand interruptions in the DNA of phage T5+ have been located by electron microscopy. All three interruptions were found in the same strand. Uneven base composition along the molecule is indicated by the preferential melting of certain regions. The data suggest a model according to which (1) the first-step-transfer DNA section is separated by a single-strand interruption from the rest of the phage genome, (2) the phage carries only one such section and therefore transfers the asymmetrical DNA molecule always in the same direction into the host cell, and (3) single-strand interruptions are points of preferred breakage.

Full text

PDF
1169

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgi E., Hershey A. D., Ingraham L. Preferred breakage points in T5 DNA molecules subjected to shear. Virology. 1966 Jan;28(1):11–14. doi: 10.1016/0042-6822(66)90301-1. [DOI] [PubMed] [Google Scholar]
  2. Crothers D. M., Zimm B. H. Viscosity and sedimentation of the DNA from bacteriophages T2 and T7 and the relation to molecular weight. J Mol Biol. 1965 Jul;12(3):525–536. doi: 10.1016/s0022-2836(65)80310-2. [DOI] [PubMed] [Google Scholar]
  3. HERSHEY A. D., GOLDBERG E., BURGI E., INGRAHAM L. Local denaturation of DNA by shearing forces and by heat. J Mol Biol. 1963 Mar;6:230–243. doi: 10.1016/s0022-2836(63)80072-8. [DOI] [PubMed] [Google Scholar]
  4. LANNI Y. T. Invasion by bacteriophage T5. II. Dissociation of calcium-independent and calcium-dependent processes. Virology. 1960 Apr;10:514–529. doi: 10.1016/0042-6822(60)90133-1. [DOI] [PubMed] [Google Scholar]
  5. LANNI Y. T. Invasion by bacteriophage T5. III. Stages revealed by changes in susceptibility of early complexes to abortive infection. Virology. 1961 Oct;15:127–135. doi: 10.1016/0042-6822(61)90229-x. [DOI] [PubMed] [Google Scholar]
  6. LANNI Y. T., MCCORQUODALE D. J., WILSON C. M. MOLECULAR ASPECTS OF DNA TRANSFER FROM PHAGE T5 TO HOST CELLS. II. ORIGIN OF FIRST-STEP-TRANSFER DNA FRAGMENTS. J Mol Biol. 1964 Oct;10:19–27. doi: 10.1016/s0022-2836(64)80024-3. [DOI] [PubMed] [Google Scholar]
  7. LEHMAN I. R. The deoxyribonucleases of Escherichia coli. I. Purification and properties of a phosphodiesterase. J Biol Chem. 1960 May;235:1479–1487. [PubMed] [Google Scholar]
  8. Lang D., Bujard H., Wolff B., Russell D. Electron microscopy of size and shape of viral DNA in solutions of different ionic strengths. J Mol Biol. 1967 Jan 28;23(2):163–181. doi: 10.1016/s0022-2836(67)80024-x. [DOI] [PubMed] [Google Scholar]
  9. Lang D., Coates P. Diffusion coefficient of DNA in solution at "zero" concentration as measured by electron microscopy. J Mol Biol. 1968 Aug 28;36(1):137–151. doi: 10.1016/0022-2836(68)90225-8. [DOI] [PubMed] [Google Scholar]
  10. Lanni Y. T. DNA transfer from phage T5 to host cells: dependence on intercurrent protein synthesis. Proc Natl Acad Sci U S A. 1965 May;53(5):969–973. doi: 10.1073/pnas.53.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lanni Y. T. First-step-transfer deoxyribonucleic acid of bacteriophage T5. Bacteriol Rev. 1968 Sep;32(3):227–242. doi: 10.1128/br.32.3.227-242.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rubenstein I. Heat-stable mutants of T5 phage. I. The physical properties of the phage and their DNA molecules. Virology. 1968 Nov;36(3):356–376. doi: 10.1016/0042-6822(68)90161-x. [DOI] [PubMed] [Google Scholar]
  13. THOMAS C. A., Jr, RUBENSTEIN I. THE ARRANGEMENTS OF NUCLEOTIDE SEQUENCES IN T2 AND T5 BACTERIOPHAGE DNA MOLECULES. Biophys J. 1964 Mar;4:93–106. doi: 10.1016/s0006-3495(64)86771-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. VINOGRAD J., BRUNER R., KENT R., WEIGLE J. Band-centrifugation of macromolecules and viruses in self-generating density gradients. Proc Natl Acad Sci U S A. 1963 Jun;49:902–910. doi: 10.1073/pnas.49.6.902. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES