Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1978 Jul;135(1):133–137. doi: 10.1128/jb.135.1.133-137.1978

Study of calcium dipicolinate release during bacterial spore germination by using a new, sensitive assay for dipicolinate.

I R Scott, D J Ellar
PMCID: PMC224788  PMID: 97264

Abstract

The release of calcium and dipicolinic acid from spores of Bacillus megaterium KM during L-alanine-induced triggering of germination has been studied using a new, simple, and rapid assay for dipicolinic acid capable of detecting a concentration of 0.5 micron. The release of both calcium and dipicolinate started within seconds of exposure of the spores to L-alanine, thus preceding other measurable changes associated with germination. From the earliest times, the two substances were released in equimolar quantities, although later in germination calcium predominated.

Full text

PDF
133

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dring G. J., Gould G. W. Sequence of events during rapid germination of spores of Bacillus cereus. J Gen Microbiol. 1971 Jan;65(1):101–104. doi: 10.1099/00221287-65-1-101. [DOI] [PubMed] [Google Scholar]
  2. Gould G. W., Dring G. J. Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex. Nature. 1975 Dec 4;258(5534):402–405. doi: 10.1038/258402a0. [DOI] [PubMed] [Google Scholar]
  3. JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
  4. Lewis J. C. Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate. Anal Biochem. 1967 May;19(2):327–337. doi: 10.1016/0003-2697(67)90168-6. [DOI] [PubMed] [Google Scholar]
  5. Lewis J. C., Snell N. S., Burr H. K. Water Permeability of Bacterial Spores and the Concept of a Contractile Cortex. Science. 1960 Aug 26;132(3426):544–545. doi: 10.1126/science.132.3426.544. [DOI] [PubMed] [Google Scholar]
  6. RIEMANN H., ORDAL Z. J. Germination of bacterial endospores with calcium and dipicolinic acid. Science. 1961 May 26;133(3465):1703–1704. doi: 10.1126/science.133.3465.1703. [DOI] [PubMed] [Google Scholar]
  7. SLEPECKY R., FOSTER J. W. Alterations in metal content of spores of Bacillus megaterium and the effect on some spore properties. J Bacteriol. 1959 Jul;78(1):117–123. doi: 10.1128/jb.78.1.117-123.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Tabor M. W., MacGee J., Holland J. W. Rapid determination of dipicolinic acid in the spores of Clostridium species by gas-liquid chromatography. Appl Environ Microbiol. 1976 Jan;31(1):25–28. doi: 10.1128/aem.31.1.25-28.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Uehara M., Frank H. A. Sequence of events during germination of putrefactive anaerobe 3679 spores. J Bacteriol. 1967 Sep;94(3):506–511. doi: 10.1128/jb.94.3.506-511.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. WOESE C., MOROWITZ H. J. Kinetics of the release of dipicolinic acid from spores of Bacillus subtilis. J Bacteriol. 1958 Jul;76(1):81–83. doi: 10.1128/jb.76.1.81-83.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wilkinson B. J., Ellar D. J., Scott I. R., Koncewicz M. A. Rapid, chloramphenicol-resistant, activation of membrane electron transport on germination of Bacillus spores. Nature. 1977 Mar 10;266(5598):174–176. doi: 10.1038/266174a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES