Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1968 Oct;61(2):726–733. doi: 10.1073/pnas.61.2.726

Studies on the formation of trensfer ribonucleic acid-ribosome complexes. V. On the function of a soluble transfer factor in protein synthesis.

S Pestka
PMCID: PMC225220  PMID: 5246003

Full text

PDF
731

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARLINGHAUS R., SHAEFER J., SCHWEET R. MECHANISM OF PEPTIDE BOND FORMATION IN POLYPEPTIDE SYNTHESIS. Proc Natl Acad Sci U S A. 1964 Jun;51:1291–1299. doi: 10.1073/pnas.51.6.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bresler S., Grajevskaja R., Kirilov S., Saminski E. Stability of peptidyl-tRNA - the intermediate of protein synthesis. Biochim Biophys Acta. 1968 Feb 26;155(2):465–475. doi: 10.1016/0005-2787(68)90192-5. [DOI] [PubMed] [Google Scholar]
  3. Bretscher M. S., Goodman H. M., Menninger J. R., Smith J. D. Polypeptide chain termination using synthetic polynucleotides. J Mol Biol. 1965 Dec;14(2):634–639. doi: 10.1016/s0022-2836(65)80219-4. [DOI] [PubMed] [Google Scholar]
  4. Brot N., Ertel R., Weissbach H. Effect of a soluble transfer factor on the reaction of aminoacyl-tRNA with puromycin. Biochem Biophys Res Commun. 1968 May 23;31(4):563–570. doi: 10.1016/0006-291x(68)90515-9. [DOI] [PubMed] [Google Scholar]
  5. Brown J. C., Doty P. Protein factor requirement for binding of messenger RNA to ribosomes. Biochem Biophys Res Commun. 1968 Feb 15;30(3):284–291. doi: 10.1016/0006-291x(68)90448-8. [DOI] [PubMed] [Google Scholar]
  6. Capecchi M. R. Polypeptide chain termination in vitro: isolation of a release factor. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1144–1151. doi: 10.1073/pnas.58.3.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark F. C., Marcker K. A. Coding response of N-fromyl-methionyl-sRNA to UUG. Nature. 1965 Sep 4;207(5001):1038–1039. doi: 10.1038/2071038b0. [DOI] [PubMed] [Google Scholar]
  8. Eisenstadt J. M., Brawerman G. A factor from Escherichia coli concerned with the stimulation of cell-free polypeptide synthesis by exogenous ribonucleic acid. I. Evidence for the occurrence of a stimulation factor. Biochemistry. 1966 Sep;5(9):2777–2783. doi: 10.1021/bi00873a001. [DOI] [PubMed] [Google Scholar]
  9. Ennis H. L. Inhibition of protein synthesis by polypeptide antibiotics.. II. In vitro protein synthesis. J Bacteriol. 1965 Oct;90(4):1109–1119. doi: 10.1128/jb.90.4.1109-1119.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Erbe R. W., Leder P. Initiation and protein synthesis: translation of di- and tri-codon messengers. Biochem Biophys Res Commun. 1968 Jun 10;31(5):798–803. doi: 10.1016/0006-291x(68)90633-5. [DOI] [PubMed] [Google Scholar]
  11. Ertel R., Brot N., Redfield B., Allende J. E., Weissbach H. Binding of guanosine 5'-triphosphate by soluble factors required for polypeptide synthesis. Proc Natl Acad Sci U S A. 1968 Mar;59(3):861–868. doi: 10.1073/pnas.59.3.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FESSENDEN J. M., MOLDAVE K. Studies on aminoacyl transfer from soluble ribonucleic acid to ribosomes. Resolution of two soluble transferring activities. J Biol Chem. 1963 Apr;238:1479–1484. [PubMed] [Google Scholar]
  13. Ganoza M. C., Nakamoto T. Studies on the mechanism of polypeptide chain termination in cell-free extracts of E. coli. Proc Natl Acad Sci U S A. 1966 Jan;55(1):162–169. doi: 10.1073/pnas.55.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gillam I., Millward S., Blew D., von Tigerstrom M., Wimmer E., Tener G. M. The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry. 1967 Oct;6(10):3043–3056. doi: 10.1021/bi00862a011. [DOI] [PubMed] [Google Scholar]
  15. Gordon J. Interaction of guanosine 5'-triphosphate with a supernatant fraction from E. coli and aminoacyl-sRNA. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1574–1578. doi: 10.1073/pnas.58.4.1574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gottesman M. E. Reaction of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J Biol Chem. 1967 Dec 10;242(23):5564–5571. [PubMed] [Google Scholar]
  17. Hershey J. W., Monro R. E. A competitive inhibitor of the GTP reaction in protein synthesis. J Mol Biol. 1966 Jun;18(1):68–76. doi: 10.1016/s0022-2836(66)80077-3. [DOI] [PubMed] [Google Scholar]
  18. JULIAN G. R. (14C)LYSINE PEPTIDES SYNTHESIZED IN AN IN VITRO ESCHERICHIA COLI SYSTEM IN THE PRESENCE OF CHLORAMPHENICOL. J Mol Biol. 1965 May;12:9–16. doi: 10.1016/s0022-2836(65)80277-7. [DOI] [PubMed] [Google Scholar]
  19. Jayaraman J., Goldberg I. H. Localization of sparsomycin action to the peptide-bond-forming step. Biochemistry. 1968 Jan;7(1):418–421. doi: 10.1021/bi00841a053. [DOI] [PubMed] [Google Scholar]
  20. KELLER E. B., ZAMECNIK P. C. The effect of guanosine diphosphate and triphosphate on the incorporation of labeled amino acids into proteins. J Biol Chem. 1956 Jul;221(1):45–59. [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. LUBIN M., ENNIS H. L. ON THE ROLE OF INTRACELLULAR POTASSIUM IN PROTEIN SYNTHESIS. Biochim Biophys Acta. 1964 Apr 27;80:614–631. doi: 10.1016/0926-6550(64)90306-8. [DOI] [PubMed] [Google Scholar]
  23. Lucas-Lenard J., Lipmann F. Separation of three microbial amino acid polymerization factors. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1562–1566. doi: 10.1073/pnas.55.6.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Monro R. E. Catalysis of peptide bond formation by 50 S ribosomal subunits from Escherichia coli. J Mol Biol. 1967 May 28;26(1):147–151. doi: 10.1016/0022-2836(67)90271-9. [DOI] [PubMed] [Google Scholar]
  25. Monro R. E., Marcker K. A. Ribosome-catalysed reaction of puromycin with a formylmethionine-containing oligonucleotide. J Mol Biol. 1967 Apr 28;25(2):347–350. doi: 10.1016/0022-2836(67)90146-5. [DOI] [PubMed] [Google Scholar]
  26. NIRENBERG M. W., MATTHAEI J. H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1588–1602. doi: 10.1073/pnas.47.10.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  28. Nishizuka Y., Lipmann F. The interrelationship between guanosine triphosphatase and amino acid polymerization. Arch Biochem Biophys. 1966 Sep 26;116(1):344–351. doi: 10.1016/0003-9861(66)90040-3. [DOI] [PubMed] [Google Scholar]
  29. PATTERSON M. S., GREENE R. C. MEASUREMENT OF LOW ENERGY BETA-EMITTERS IN AQUEOUS SOLUTION BY LIQUID SCINTILLATION COUNTING OF EMULSIONS. Anal Chem. 1965 Jun;37:854–857. doi: 10.1021/ac60226a017. [DOI] [PubMed] [Google Scholar]
  30. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 3. The formation of peptide bonds by ribosomes in the absence of supernatant enzymes. J Biol Chem. 1968 May 25;243(10):2810–2820. [PubMed] [Google Scholar]
  31. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. I. The effect of streptomycin and ribosomal dissociation on 14-C-aminoacyl transfer ribonucleic acid binding to ribosomes. J Biol Chem. 1966 Jan 25;241(2):367–372. [PubMed] [Google Scholar]
  32. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. II. A possible site on the 50 S subunit protecting aminoacyl transfer ribonucleic acid from deacylation. J Biol Chem. 1967 Nov 10;242(21):4939–4947. [PubMed] [Google Scholar]
  33. Ravel J. M. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1811–1816. doi: 10.1073/pnas.57.6.1811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Revel M., Gros F. A factor from E. coli required for the translation of natural messenger RNA. Biochem Biophys Res Commun. 1966 Oct 5;25(1):124–132. doi: 10.1016/0006-291x(66)90649-8. [DOI] [PubMed] [Google Scholar]
  35. Rychlík I. Release of lysine peptides by puromycin from polylysyl-transfer ribonucleic acid in the presence of ribosomes. Biochim Biophys Acta. 1966 Feb 21;114(2):425–427. doi: 10.1016/0005-2787(66)90327-3. [DOI] [PubMed] [Google Scholar]
  36. Seeds N. W., Conway T. W. Reversal by GTP of soluble RNA inhibition of polyphenylalanine synthesis. Biochem Biophys Res Commun. 1966 Apr 19;23(2):111–116. doi: 10.1016/0006-291x(66)90513-4. [DOI] [PubMed] [Google Scholar]
  37. Stanley W. M., Jr, Salas M., Wahba A. J., Ochoa S. Translation of the genetic message: factors involved in the initiation of protein synthesis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):290–295. doi: 10.1073/pnas.56.1.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Takanami M., Yan Y. The release of polypeptide chains from ribosomes in cell-free amino acid-incorporating systems by specific combinations of bases in synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1965 Nov;54(5):1450–1458. doi: 10.1073/pnas.54.5.1450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tanaka N., Kinoshita T., Masukawa H. Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem Biophys Res Commun. 1968 Feb 15;30(3):278–283. doi: 10.1016/0006-291x(68)90447-6. [DOI] [PubMed] [Google Scholar]
  40. Zamir A., Leder P., Elson D. A ribosome-catalyzed reaction between N-formylmethionyl-trna and puromycin. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1794–1801. doi: 10.1073/pnas.56.6.1794. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES