Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1997 Nov;110(2):203–211. doi: 10.1111/j.1365-2249.1997.tb08318.x

Biochemical analysis and immunogenicity of Leishmania major amastigote fractions in cutaneous leishmaniasis

S RAFATI *, S COUTY-JOUVE *, M H ALIMOHAMMADIAN *, J A LOUIS *
PMCID: PMC2265498  PMID: 9367403

Abstract

Soluble Leishmania antigen (SLA) from both developmental stages of L. major (L. major MRHO/IR/75/ ER) were prepared. Three and five subfractions of SLA from amastigote and promastigote were obtained by fast protein liquid chromatography (FPLC), respectively. Biochemical analyses and comparison of amastigote and promastigote SLA were done. The biochemical analyses revealed that the first fraction of L. major amastigote possesses a distinct band on its electrophoretic mobility pattern corresponding to a position of 24 kD, and it has enzymatic activity with characteristics of a cysteine proteinase. The isolated fractions of amastigote were tested for induction of proliferation, interferon-gamma (IFN-γ) and IL-4 production in cultures of peripheral blood mononuclear cells (PBMC) from individuals who had recovered and also chronic patients of cutaneous leishmaniasis caused by L. major. The cells of recovered individuals compared with chronic cases proliferated profoundly in response to the first fraction of amastigote SLA. In all recovered individuals, the IFN-γ, but not IL-4, was secreted in response to stimulation with the first fraction of amastigote SLA. In chronic cutaneous leishmaniasis, IFN-γ was infrequently observed in response to stimulation by all three fractions of amastigote SLA, but secretion of IL-4 was observed. These data indicate that first fraction of amastigote SLA is a strong inducer of primed human immune response to L. major, and may have a protective function.

Keywords: cutaneous leishmaniasis, biochemical analysis of amastigote soluble antigens interferon-gamma and IL-4 evaluation

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

References

  • 1.Locksley RM, Louis JA. Immunology of leishmaniasis. Curr Opin Immunol. 1992;4:413–8. doi: 10.1016/s0952-7915(06)80032-4. [DOI] [PubMed] [Google Scholar]
  • 2.Melby CP. Experimental leishmaniasis: review. Rev Infect Dis. 1991;13:1009–17. doi: 10.1093/clinids/13.5.1009. [DOI] [PubMed] [Google Scholar]
  • 3.Kemp M, Theander TG, Kharazmi A. The contrasting roles of CD4+ T cells in intracellular infections in humans: leishmaniasis as an example. Immunol Today. 1996;17:13–16. doi: 10.1016/0167-5699(96)80562-7. [DOI] [PubMed] [Google Scholar]
  • 4.Peters W, Killick-Kendrick R. III. New York: Academic Press; 1987. The leishmaniasis in biology and medicine clinical aspects and control. [Google Scholar]
  • 5.Modabber F. Development of vaccines against leishmaniasis. Scand 3. Infect Dis Supplement. 1990;76:72–78. [PubMed] [Google Scholar]
  • 6.WHO. Technical report series 793. Geneva. 1990.
  • 7.Reiner SL, Locksley RM. The regulation of immunity to Leishmania major. Annu Rev Immunol. 1995;13:151–77. doi: 10.1146/annurev.iy.13.040195.001055. [DOI] [PubMed] [Google Scholar]
  • 8.Bretscher P, Wei G, Menon J, Bickfeldt-Ohman H. Establishment of stable cell-mediated immunity that makes susceptible mice resistance to Leishmania major. Science. 1992;257:539–42. doi: 10.1126/science.1636090. [DOI] [PubMed] [Google Scholar]
  • 9.Wang ZE, Zheng S, Corry DB, Dalton DK, Seder RA, Reiner SL, Locksley RM. Interferon y independent effects of interleukin 12 administered during acute or established infection due to Leishmania major. Proc Natl Acad Sci USA. 1994;91:12932–6. doi: 10.1073/pnas.91.26.12932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Bogdan C, Rollinghoff M. The impact of the type 1 and type 2 T helper cell concept on novel vaccine design with emphasis on protection against Leishmania parasites. In: Kaufmann SHE, editor. Concepts in vaccine development. Berlin: Walter de Gruyter; 1996. pp. 143–180. [Google Scholar]
  • 11.Sharton-Kersten Afonso LCC, Wysocka M, Trinchieri G, Scott P. IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J Immunol. 1995;154:5320–30. [PubMed] [Google Scholar]
  • 12.Swihart K, Fruth U, Messmer N, et al. Mice from genetically resistant background lacking the interferon-7 receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell type-1 CD4+ T cell response. J Exp Med. 1995;181:961–71. doi: 10.1084/jem.181.3.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Reed SG, Scott P. T cell and cytokine responses in leishmaniasis. Curr Opin Immunol. 1993;5:524–31. doi: 10.1016/0952-7915(93)90033-o. [DOI] [PubMed] [Google Scholar]
  • 14.Scott P, Natovitz P, Coffman RL, Pearce E, Sher A. Immunoregulation of cutaneous leishmaniasis T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigen. J Exp Med. 1988;168:1675–84. doi: 10.1084/jem.168.5.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Diego Miralles G, Stoecke MY, McDermott DF, Finkelman FD, Murray HW. Thl and Th2 cell-associated cytokines in experimental visceral leishmaniasis. Infect Immun. 1993;3:1058–63. doi: 10.1128/iai.62.3.1058-1063.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Russo DM, Lardim EM, Carvalho EM, Sleath PR, Armitage RJ, Olafson RW, Reed SG. Mapping human T cell epitopes in Leishmania gp63. Identification of cross-reactive and species specific epitopes. J Immunol. 1993;150:932–9. [PubMed] [Google Scholar]
  • 17.Molyneux DH, Ashford RW. London: Academic Press; 1983. The biology of Trypanosoma and Leishmania, parasite of man and domestic animals; pp. 192–194. [Google Scholar]
  • 18.Wilson ME, Young BM, Katherine PA, Weinstock JV, Metwali A, KM AH, Donelson JE. A recombinant Leishmania chagasi antigen. Infect Immun. 1995;5:2062–9. doi: 10.1128/iai.63.5.2062-2069.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Louis JA, Moedder E, Behin R, Engers H. Recognition of protozoan parasite antigens by murine T lymphocytes. Eur J Immunol. 1979;9:871–47. doi: 10.1002/eji.1830091103. [DOI] [PubMed] [Google Scholar]
  • 20.Glaser TA, Humphris DC, Mukkada AJ. Leishmania major and L. donavani: a method for rapid purification of amastigote. Exp Parasitol. 1990;71:343–5. doi: 10.1016/0014-4894(90)90039-f. [DOI] [PubMed] [Google Scholar]
  • 21.Scott P, Pearce E, Natovitz P, Sher A. Vaccination against cutaneous leishmaniasis in murine model n. Immunological properties of protective and non protective subfractions of a soluble promastigotes extract. J Immunol. 1987;139:3118–25. [PubMed] [Google Scholar]
  • 22.Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 23.Ausubel F, Brent R. 3. New York: Wiley; 1995. Short protocols in molecular biology. [Google Scholar]
  • 24.Pupkis MF, Tetley L, Coombs GH. Leishmania mexicana: amastigote hydrolyses in unusual lysosomes. Exp Parasitol. 1986;62:29–39. doi: 10.1016/0014-4894(86)90005-6. [DOI] [PubMed] [Google Scholar]
  • 25.Zilberstein D. Adaptation of Leishmania species to an acidic environment. Biochem Parasitol, Taylor and Francis. 1991. pp. 349–66.
  • 26.Bates PA. Axenic culture of Leishmania amastigotes. Parasitol Today. 1993;9:143–6. doi: 10.1016/0169-4758(93)90181-e. [DOI] [PubMed] [Google Scholar]
  • 27.McKerrow JH. Parasite proteases. Exp Parasitol. 1989;68:111–5. doi: 10.1016/0014-4894(89)90016-7. [DOI] [PubMed] [Google Scholar]
  • 28.North MJ, Mottram JC, Coombs GH. Cysteine proteinases of parasitic protozoa. Parasitol Today. 1990;6:270–5. doi: 10.1016/0169-4758(90)90189-b. [DOI] [PubMed] [Google Scholar]
  • 29.Coombs GH, Baxter J. Inhibition of Leishmania amastigote growth by antipain and leupeptin. Ann Trop Med Parasitol. 1984;78:21–24. doi: 10.1080/00034983.1984.11811768. [DOI] [PubMed] [Google Scholar]
  • 30.Titus RG, Theodos CM, Shanker A, Hall LR. Interaction between Leishmania major and macrophages. In: Zwilling T, Elisenstein T, editors. Macrophage-pathogen interaction. New York: Marcel Dekker; 1993. pp. 437–59. [Google Scholar]
  • 31.Chang KP, Fong D, Bray RS. The biology of Leishmania and leishmaniasis. In: Chang KP, Bray ES, editors. Leishmaniasias. Amesterdam: Elsivier; 1985. pp. 1–30. [Google Scholar]
  • 32.Mukkada AJ, Meade JC, Glaser TA, Bonventre PF. Enhanced metabolism of Leishmania donovani amastigotes at acid pH: an adaptation for intercellular growth. Science. 1985;229:1099–101. doi: 10.1126/science.4035350. [DOI] [PubMed] [Google Scholar]
  • 33.Robertson CD, Coombs GH. Characterization of three groups of cysteine proteinases in the amastigotes of Leishmania mexicana mexicana. Mol Biochem Parasitol. 1990;42:269–76. doi: 10.1016/0166-6851(90)90170-q. [DOI] [PubMed] [Google Scholar]
  • 34.Lackwood BC, North MJ, Mallison DJ, Coombs GH. Analysis of Leishmania proteinases reveals developmental changes in species-specific forms and a common 68 kDa activity. FEMS Microbiol Letters. 1987;48:345–50. [Google Scholar]
  • 35.North MJ, Cooms GH. Proteinases of Leishmania mexicana amastigotes and promastigotes analysis by gel electrophoresis. Mol Biochem Parasitol. 1981;3:293–300. doi: 10.1016/0166-6851(81)90003-7. [DOI] [PubMed] [Google Scholar]
  • 36.Ilg T, Fuch M, Gnau V, Wolfram M, Harbecke D, Overath P. Distribution of parasite cysteine proteinases in lesions of mice infected with Leishmania mexicana amastigotes. Mol Biochem Parasitol. 1994;67:193–203. doi: 10.1016/0166-6851(94)00126-x. [DOI] [PubMed] [Google Scholar]
  • 37.Robertson CD, Coombs GH. Stage specific proteinases of Leishmania mexicana mexicana promastigotes. FEMS Microbiology Letters. 1992;94:127–32. doi: 10.1111/j.1574-6968.1992.tb05301.x. [DOI] [PubMed] [Google Scholar]
  • 38.McMahon-Pratt D, Jaffe CL, Kahl L, Langer P, Lohman K, Pan A, Rivas L. Characterization of developmentally regulated molecules of Leishmania host-parasite cellular and molecular interaction in protozoal infection. In: Chang KP, Snary D, editors. Biochemistry of parasite. Berlin: Springer-Verlag; 1987. pp. 123–36. [Google Scholar]
  • 39.Mottram JC, Robertson CD, Coombs GH, Barry JD. A developmentally regulated cysteine proteinase gene of Leishmania mexicana. Mol Microbiol. 1992;6:1925–32. doi: 10.1111/j.1365-2958.1992.tb01365.x. [DOI] [PubMed] [Google Scholar]
  • 40.North MJ, Lackwood BC, Mallinson DJ, Coombs GH. Proteolysis in Leishmania: species differences and developmental change in proteinase activity. In: Hart DT, editor. Leishmaniasis–The current status and new strategies for control. NATO ASI Series. Vol. 163. New York: Plenum Press; 1987. pp. 635–42. [Google Scholar]
  • 41.Melby PC, Sacks DL. Identification of antigens recognized by T cells in human leishmaniasis: analysis of T cells clones by immunoblotting. Infect Immun. 1989;57:2971–6. doi: 10.1128/iai.57.10.2971-2976.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Kurtzhals JAL, Hey AS, Jardim A, et al. Dichotomy of the human T cell response to Leishmania antigen II. Absent or Th2 like response to gp63 and Thl like response to LPG associated protein in cells from cured visceral leishmaniasis patients. Clin Exp Immunol. 1994;96:416–21. doi: 10.1111/j.1365-2249.1994.tb06044.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Melby PC, Andrade-Narvaez FJ, Darnell BJ, Valencia-Pacheco G, Tryon VU, Palomo-Cetina A. Increased expression of proinflammatory cytokines in chronic lesions of human cutaneous leishmaniasis. Infect Immun. 1994;62:8837–42. doi: 10.1128/iai.62.3.837-842.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES