Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Mar;34(3):501–507. doi: 10.1128/jcm.34.3.501-507.1996

Novel, ligation-dependent PCR assay for detection of hepatitis C in serum.

T C Hsuih 1, Y N Park 1, C Zaretsky 1, F Wu 1, S Tyagi 1, F R Kramer 1, R Sperling 1, D Y Zhang 1
PMCID: PMC228834  PMID: 8904402

Abstract

A simple, sensitive, and specific ligation-dependent PCR (LD-PCR) method for the detection of hepatitis C virus (HCV) RNA in serum is described. The assay uses two DNA capture probes for RNA isolation and two DNA hemiprobes for subsequent PCR. Each capture probe has a 3' sequence complementary to the conserved 5' untranslated region of HCV RNA and a biotin moiety at the 5' end capable of interacting with streptavidin-coated paramagnetic beads. Each hemiprobe contains a sequence complementary to the 5' untranslated region in juxtaposition to one another and a common sequence for PCR primer binding. In guanidinium thiocyanate solutions, the capture probes and the hemiprobes form a hybrid with their target, and the hybrid can be isolated from serum by the binding of the capture probes to the paramagnetic beads in the presence of a magnetic field. The hemiprobes can then be linked to each other by incubation with T4 DNA ligase to form a full probe that serves as a template for a PCR. When serial 10-fold dilutions of synthetic HCV RNA (10(7) to 10 molecules) were tested, there was a good correlation between the amount of PCR product and the initial number of RNA molecules, with a sensitivity of 100 HCV RNA molecules per reaction. Twenty-four specimens that had been tested by either a branched DNA probe (bDNA) assay (13 specimens) or a reverse transcription PCR (RT-PCR) assay (11 specimens) were also analyzed by LD-PCR. The results showed a good correlation among LD-PCR, RT-PCR, and the bDNA assay. However, both LD-PCR and RT-PCR were more sensitive than the bDNA assay when the HCV titer was low.

Full Text

The Full Text of this article is available as a PDF (257.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):189–193. doi: 10.1073/pnas.88.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cha T. A., Kolberg J., Irvine B., Stempien M., Beall E., Yano M., Choo Q. L., Houghton M., Kuo G., Han J. H. Use of a signature nucleotide sequence of hepatitis C virus for detection of viral RNA in human serum and plasma. J Clin Microbiol. 1991 Nov;29(11):2528–2534. doi: 10.1128/jcm.29.11.2528-2534.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang G. J., Trent D. W., Vorndam A. V., Vergne E., Kinney R. M., Mitchell C. J. An integrated target sequence and signal amplification assay, reverse transcriptase-PCR-enzyme-linked immunosorbent assay, to detect and characterize flaviviruses. J Clin Microbiol. 1994 Feb;32(2):477–483. doi: 10.1128/jcm.32.2.477-483.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Chumakov K. M. Reverse transcriptase can inhibit PCR and stimulate primer-dimer formation. PCR Methods Appl. 1994 Aug;4(1):62–64. doi: 10.1101/gr.4.1.62. [DOI] [PubMed] [Google Scholar]
  7. Clementi M., Menzo S., Bagnarelli P., Manzin A., Valenza A., Varaldo P. E. Quantitative PCR and RT-PCR in virology. PCR Methods Appl. 1993 Feb;2(3):191–196. doi: 10.1101/gr.2.3.191. [DOI] [PubMed] [Google Scholar]
  8. Dilworth D. D., McCarrey J. R. Single-step elimination of contaminating DNA prior to reverse transcriptase PCR. PCR Methods Appl. 1992 May;1(4):279–282. doi: 10.1101/gr.1.4.279. [DOI] [PubMed] [Google Scholar]
  9. Gretch D., Corey L., Wilson J., dela Rosa C., Willson R., Carithers R., Jr, Busch M., Hart J., Sayers M., Han J. Assessment of hepatitis C virus RNA levels by quantitative competitive RNA polymerase chain reaction: high-titer viremia correlates with advanced stage of disease. J Infect Dis. 1994 Jun;169(6):1219–1225. doi: 10.1093/infdis/169.6.1219. [DOI] [PubMed] [Google Scholar]
  10. Inchauspe G., Abe K., Zebedee S., Nasoff M., Prince A. M. Use of conserved sequences from hepatitis C virus for the detection of viral RNA in infected sera by polymerase chain reaction. Hepatology. 1991 Oct;14(4 Pt 1):595–600. doi: 10.1016/0270-9139(91)90044-v. [DOI] [PubMed] [Google Scholar]
  11. Landegren U., Kaiser R., Sanders J., Hood L. A ligase-mediated gene detection technique. Science. 1988 Aug 26;241(4869):1077–1080. doi: 10.1126/science.3413476. [DOI] [PubMed] [Google Scholar]
  12. Lee C. H., Cheng C., Wang J., Lumeng L. Identification of hepatitis C viruses with a nonconserved sequence of the 5' untranslated region. J Clin Microbiol. 1992 Jun;30(6):1602–1604. doi: 10.1128/jcm.30.6.1602-1604.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Manzin A., Bagnarelli P., Menzo S., Giostra F., Brugia M., Francesconi R., Bianchi F. B., Clementi M. Quantitation of hepatitis C virus genome molecules in plasma samples. J Clin Microbiol. 1994 Aug;32(8):1939–1944. doi: 10.1128/jcm.32.8.1939-1944.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Numata N., Ohori H., Hayakawa Y., Saitoh Y., Tsunoda A., Kanno A. Demonstration of hepatitis C virus genome in saliva and urine of patients with type C hepatitis: usefulness of the single round polymerase chain reaction method for detection of the HCV genome. J Med Virol. 1993 Oct;41(2):120–128. doi: 10.1002/jmv.1890410207. [DOI] [PubMed] [Google Scholar]
  15. Okamoto H., Okada S., Sugiyama Y., Kurai K., Iizuka H., Machida A., Miyakawa Y., Mayumi M. Nucleotide sequence of the genomic RNA of hepatitis C virus isolated from a human carrier: comparison with reported isolates for conserved and divergent regions. J Gen Virol. 1991 Nov;72(Pt 11):2697–2704. doi: 10.1099/0022-1317-72-11-2697. [DOI] [PubMed] [Google Scholar]
  16. Okamoto M., Baba M., Kodama E., Sekine K., Takagi T., Kasukawa R., Shigeta S. Detection of hepatitis C virus genome in human serum by multi-targeted polymerase chain reaction. J Med Virol. 1993 Sep;41(1):6–10. doi: 10.1002/jmv.1890410103. [DOI] [PubMed] [Google Scholar]
  17. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  18. Sherman K. E., O'Brien J., Gutierrez A. G., Harrison S., Urdea M., Neuwald P., Wilber J. Quantitative evaluation of hepatitis C virus RNA in patients with concurrent human immunodeficiency virus infections. J Clin Microbiol. 1993 Oct;31(10):2679–2682. doi: 10.1128/jcm.31.10.2679-2682.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Urdea M. S., Horn T., Fultz T. J., Anderson M., Running J. A., Hamren S., Ahle D., Chang C. A. Branched DNA amplification multimers for the sensitive, direct detection of human hepatitis viruses. Nucleic Acids Symp Ser. 1991;(24):197–200. [PubMed] [Google Scholar]
  20. Wu Y., Zhang D. Y., Kramer F. R. Amplifiable messenger RNA. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11769–11773. doi: 10.1073/pnas.89.24.11769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. van Doorn L. J., Kleter B., Voermans J., Maertens G., Brouwer H., Heijtink R., Quint W. Rapid detection of hepatitis C virus RNA by direct capture from blood. J Med Virol. 1994 Jan;42(1):22–28. doi: 10.1002/jmv.1890420105. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES