Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Mar 1;112(5):891–901. doi: 10.1083/jcb.112.5.891

Binding of actin to liver cell membranes: the state of membrane-bound actin

PMCID: PMC2288875  PMID: 1705560

Abstract

Previous work has shown that actin binds specifically and saturably to liver membranes stripped of endogenous actin (Tranter, M. P., S. P. Sugrue, and M. A. Schwartz. 1989. J. Cell Biol. 109:2833-2840). Scatchard plots of equilibrium binding data were linear, indicating that binding is not cooperative, as would be expected for F- or G- actin. To determine the state of membrane-bound actin, we have analyzed the binding of F- and G-actin to liver cell membranes. G-actin in low salt depolymerization buffer and EF-actin, a derivative that polymerizes very poorly in solution, bind to liver cell membranes as well as untreated actin in polymerization buffer. Phalloidin-stabilized F-actin binds, but to a lesser extent. The binding of F- and G-actins are mutually competitive and are inhibited by ATP, suggesting that both forms of actin bind to the same sites. For untreated actin in polymerization buffer, the time course of binding is biphasic, with an initial rapid component which is followed by a plateau phase, then a second, slower component. The binding kinetics of pure F-actin and pure G-actin are both monophasic and match the fast and slower components, respectively, of untreated actin. In the reconstituted system, membrane- bound actin does not stain with rhodamine-phalloidin, nor are actin filaments detected by EM. Distinct regions of amorphous material, however, are visible, which stain with an anti-actin antibody. The exact nature of this material has yet to be determined. A model of actin binding is presented.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiken J., Cima L., Schloo B., Mooney D., Johnson L., Langer R., Vacanti J. P. Studies in rat liver perfusion for optimal harvest of hepatocytes. J Pediatr Surg. 1990 Jan;25(1):140–145. doi: 10.1016/s0022-3468(05)80180-0. [DOI] [PubMed] [Google Scholar]
  2. Amrein-Gloor M., Gazzotti P. Identification of a fodrin-like protein in rat liver basolateral membranes. Biochem Biophys Res Commun. 1987 Jun 30;145(3):1033–1037. doi: 10.1016/0006-291x(87)91539-7. [DOI] [PubMed] [Google Scholar]
  3. Apgar J. R., Herrmann S. H., Robinson J. M., Mescher M. F. Triton X-100 extraction of P815 tumor cells: evidence for a plasma membrane skeleton structure. J Cell Biol. 1985 May;100(5):1369–1378. doi: 10.1083/jcb.100.5.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Apgar J. R., Mescher M. F. Agorins: major structural proteins of the plasma membrane skeleton of P815 tumor cells. J Cell Biol. 1986 Aug;103(2):351–360. doi: 10.1083/jcb.103.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Begg D. A., Rodewald R., Rebhun L. I. The visualization of actin filament polarity in thin sections. Evidence for the uniform polarity of membrane-associated filaments. J Cell Biol. 1978 Dec;79(3):846–852. doi: 10.1083/jcb.79.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett V. Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues. Nature. 1979 Oct 18;281(5732):597–599. doi: 10.1038/281597a0. [DOI] [PubMed] [Google Scholar]
  7. Bonder E. M., Fishkind D. J., Cotran N. M., Begg D. A. The cortical actin-membrane cytoskeleton of unfertilized sea urchin eggs: analysis of the spatial organization and relationship of filamentous actin, nonfilamentous actin, and egg spectrin. Dev Biol. 1989 Aug;134(2):327–341. doi: 10.1016/0012-1606(89)90105-x. [DOI] [PubMed] [Google Scholar]
  8. Carraway K. L., Cerra R. F., Jung G., Carraway C. A. Membrane-associated actin from the microvillar membranes of ascites tumor cells. J Cell Biol. 1982 Sep;94(3):624–630. doi: 10.1083/jcb.94.3.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen C. M., Foley S. F. Spectrin-dependent and -independent association of F-actin with the erythrocyte membrane. J Cell Biol. 1980 Aug;86(2):694–698. doi: 10.1083/jcb.86.2.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coluccio L. M., Tilney L. G. Phalloidin enhances actin assembly by preventing monomer dissociation. J Cell Biol. 1984 Aug;99(2):529–535. doi: 10.1083/jcb.99.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cooper J. A., Bryan J., Schwab B., 3rd, Frieden C., Loftus D. J., Elson E. L. Microinjection of gelsolin into living cells. J Cell Biol. 1987 Mar;104(3):491–501. doi: 10.1083/jcb.104.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Estes J. E., Selden L. A., Gershman L. C. Mechanism of action of phalloidin on the polymerization of muscle actin. Biochemistry. 1981 Feb 17;20(4):708–712. doi: 10.1021/bi00507a006. [DOI] [PubMed] [Google Scholar]
  13. Fowler V. M., Luna E. J., Hargreaves W. R., Taylor D. L., Branton D. Spectrin promotes the association of F-actin with the cytoplasmic surface of the human erythrocyte membrane. J Cell Biol. 1981 Feb;88(2):388–395. doi: 10.1083/jcb.88.2.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. French S. W., Davies P. L. Ultrastructural localization of actin-like filaments in rat hepatocytes. Gastroenterology. 1975 Apr;68(4 Pt 1):765–774. [PubMed] [Google Scholar]
  15. Geiger B. Membrane-cytoskeleton interaction. Biochim Biophys Acta. 1983 Aug 11;737(3-4):305–341. doi: 10.1016/0304-4157(83)90005-9. [DOI] [PubMed] [Google Scholar]
  16. Goodloe-Holland C. M., Luna E. J. A membrane cytoskeleton from Dictyostelium discoideum. III. Plasma membrane fragments bind predominantly to the sides of actin filaments. J Cell Biol. 1984 Jul;99(1 Pt 1):71–78. doi: 10.1083/jcb.99.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gruenstein E., Rich A., Weihing R. R. Actin associated with membranes from 3T3 mouse fibroblast and HeLa cells. J Cell Biol. 1975 Jan;64(1):223–234. doi: 10.1083/jcb.64.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hegyi G., Premecz G., Sain B., Mühlrád A. Selective carbethoxylation of the histidine residues of actin by diethylpyrocarbonate. Eur J Biochem. 1974 May 2;44(1):7–12. doi: 10.1111/j.1432-1033.1974.tb03452.x. [DOI] [PubMed] [Google Scholar]
  19. Hirokawa N., Tilney L. G. Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J Cell Biol. 1982 Oct;95(1):249–261. doi: 10.1083/jcb.95.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hubbard A. L., Ma A. Isolation of rat hepatocyte plasma membranes. II. Identification of membrane-associated cytoskeletal proteins. J Cell Biol. 1983 Jan;96(1):230–239. doi: 10.1083/jcb.96.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ishikawa H. Plasmalemmal undercoat: the cytoskeleton supporting the plasmalemma. Arch Histol Cytol. 1988 May;51(2):127–145. doi: 10.1679/aohc.51.127. [DOI] [PubMed] [Google Scholar]
  22. Jacobson B. S. Actin binding to the cytoplasmic surface of the plasma membrane isolated from Dictyostelium discoideum. Biochem Biophys Res Commun. 1980 Dec 31;97(4):1493–1498. doi: 10.1016/s0006-291x(80)80034-9. [DOI] [PubMed] [Google Scholar]
  23. Jacobson B. S. Interaction of the plasma membrane with the cytoskeleton: an overview. Tissue Cell. 1983;15(6):829–852. doi: 10.1016/0040-8166(83)90053-8. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Luna E. J., Fowler V. M., Swanson J., Branton D., Taylor D. L. A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial characterization of an actin-binding activity. J Cell Biol. 1981 Feb;88(2):396–409. doi: 10.1083/jcb.88.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MacLean-Fletcher S., Pollard T. D. Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun. 1980 Sep 16;96(1):18–27. doi: 10.1016/0006-291x(80)91175-4. [DOI] [PubMed] [Google Scholar]
  27. Mescher M. F., Jose M. J., Balk S. P. Actin-containing matrix associated with the plasma membrane of murine tumour and lymphoid cells. Nature. 1981 Jan 15;289(5794):139–144. doi: 10.1038/289139a0. [DOI] [PubMed] [Google Scholar]
  28. Mühlrad A., Hegyi G., Horányi M. Studies on the properties of chemically modified actin. 3. Carbethoxylation. Biochim Biophys Acta. 1969 May;181(1):184–190. doi: 10.1016/0005-2795(69)90240-2. [DOI] [PubMed] [Google Scholar]
  29. Phillips M. J., Oda M., Yousef I. M., Funatsu K. Effects of cytochalasin B on membrane-associated microfilaments in a cell-free system. J Cell Biol. 1981 Nov;91(2 Pt 1):524–530. doi: 10.1083/jcb.91.2.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schwartz M. A., Luna E. J. Binding and assembly of actin filaments by plasma membranes from Dictyostelium discoideum. J Cell Biol. 1986 Jun;102(6):2067–2075. doi: 10.1083/jcb.102.6.2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schwartz M. A., Luna E. J. How actin binds and assembles onto plasma membranes from Dictyostelium discoideum. J Cell Biol. 1988 Jul;107(1):201–209. doi: 10.1083/jcb.107.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shariff A., Luna E. J. Dictyostelium discoideum plasma membranes contain an actin-nucleating activity that requires ponticulin, an integral membrane glycoprotein. J Cell Biol. 1990 Mar;110(3):681–692. doi: 10.1083/jcb.110.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  34. Sugrue S. P., Hay E. D. Response of basal epithelial cell surface and Cytoskeleton to solubilized extracellular matrix molecules. J Cell Biol. 1981 Oct;91(1):45–54. doi: 10.1083/jcb.91.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tilney L. G. The polymerization of actin. II. How nonfilamentous actin becomes nonrandomly distributed in sperm: evidence for the association of this actin with membranes. J Cell Biol. 1976 Apr;69(1):51–72. doi: 10.1083/jcb.69.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tranter M. P., Sugrue S. P., Schwartz M. A. Evidence for a direct, nucleotide-sensitive interaction between actin and liver cell membranes. J Cell Biol. 1989 Dec;109(6 Pt 1):2833–2840. doi: 10.1083/jcb.109.6.2833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wolosin J. M., Okamoto C., Forte T. M., Forte J. G. Actin and associated proteins in gastric epithelial cells. Biochim Biophys Acta. 1983 Dec 13;761(2):171–182. doi: 10.1016/0304-4165(83)90226-x. [DOI] [PubMed] [Google Scholar]
  38. Wuestehube L. J., Luna E. J. F-actin binds to the cytoplasmic surface of ponticulin, a 17-kD integral glycoprotein from Dictyostelium discoideum plasma membranes. J Cell Biol. 1987 Oct;105(4):1741–1751. doi: 10.1083/jcb.105.4.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yousef I. M., Murray R. K. Studies on the preparation of rat liver plasma membrane fractions and on their polypeptide patterns. Can J Biochem. 1978 Jul;56(7):713–721. doi: 10.1139/o78-107. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES