Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Oct 2;115(2):321–328. doi: 10.1083/jcb.115.2.321

Physiologically active chloroplasts contain pools of unassembled extrinsic proteins of the photosynthetic oxygen-evolving enzyme complex in the thylakoid lumen

PMCID: PMC2289146  PMID: 1918144

Abstract

The oxygen-evolving complex (OEC) of photosystem II (PS II) consists of at least three extrinsic membrane-associated protein subunits, OE33, OE23, and OE17, with associated Mn2+, Ca2+, and Cl- ions. These subunits are bound to the lumen side of PS II core proteins embedded in the thylakoid membrane. Our experiments reveal that a significant fraction of each subunit is normally present in unassembled pools within the thylakoid lumen. This conclusion was supported by immunological detection of free subunits after freshly isolated pea thylakoids were fractionated with low levels of Triton X-100. Plastocyanin, a soluble lumen protein, was completely released from the lumen by 0.04% Triton X-100. This gentle detergent treatment also caused the release from the thylakoids of between 10 and 20%, 40 and 60%, and 15 and 50% of OE33, OE23, and OE17, respectively. Measurements of the rates of oxygen evolution from Triton-treated thylakoids, both in the presence and absence of Ca2+, and before and after incubation with hydroquinone, demonstrated that the OEC was not dissociated by the detergent treatment. Thylakoids isolated from spinach released similar amounts of extrinsic proteins after Triton treatment. These data demonstrate that physiologically active chloroplasts contain significant pools of unassembled extrinsic OEC polypeptide subunits free in the lumen of the thylakoids.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett J. Biosynthesis of the light-harvesting chlorophyll a/b protein. Polypeptide turnover in darkness. Eur J Biochem. 1981 Aug;118(1):61–70. doi: 10.1111/j.1432-1033.1981.tb05486.x. [DOI] [PubMed] [Google Scholar]
  2. Biekmann S., Feierabend J. Synthesis and degradation of unassembled polypeptides of the coupling factor of photophosphorylation CF1 in 70S ribosome-deficient rye leaves. Eur J Biochem. 1985 Nov 4;152(3):529–535. doi: 10.1111/j.1432-1033.1985.tb09228.x. [DOI] [PubMed] [Google Scholar]
  3. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
  4. Burnap R. L., Sherman L. A. Deletion mutagenesis in Synechocystis sp. PCC6803 indicates that the Mn-stabilizing protein of photosystem II is not essential for O2 evolution. Biochemistry. 1991 Jan 15;30(2):440–446. doi: 10.1021/bi00216a020. [DOI] [PubMed] [Google Scholar]
  5. Callahan F. E., Becker D. W., Cheniae G. M. Studies on the Photoactivation of the Water-Oxidizing Enzyme: II. Characterization of Weak Light Photoinhibition of PSII and Its Light-Induced Recovery. Plant Physiol. 1986 Sep;82(1):261–269. doi: 10.1104/pp.82.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Callahan F. E., Cheniae G. M. Studies on the photoactivation of the water-oxidizing enzyme : I. Processes limiting photoactivation in hydroxylamine-extracted leaf segments. Plant Physiol. 1985 Nov;79(3):777–786. doi: 10.1104/pp.79.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheniae G. M., Martin I. F. Effects of Hydroxylamine on Photosystem II: I. Factors Affecting the Decay of O(2) Evolution. Plant Physiol. 1971 Apr;47(4):568–575. doi: 10.1104/pp.47.4.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cline K., Fulsom D. R., Viitanen P. V. An imported thylakoid protein accumulates in the stroma when insertion into thylakoids is inhibited. J Biol Chem. 1989 Aug 25;264(24):14225–14232. [PubMed] [Google Scholar]
  9. Cline K., Werner-Washburne M., Lubben T. H., Keegstra K. Precursors to two nuclear-encoded chloroplast proteins bind to the outer envelope membrane before being imported into chloroplasts. J Biol Chem. 1985 Mar 25;260(6):3691–3696. [PubMed] [Google Scholar]
  10. Haehnel W., Ratajczak R., Robenek H. Lateral distribution and diffusion of plastocyanin in chloroplast thylakoids. J Cell Biol. 1989 Apr;108(4):1397–1405. doi: 10.1083/jcb.108.4.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hare J. F. Mechanisms of membrane protein turnover. Biochim Biophys Acta. 1990 Feb 28;1031(1):71–90. doi: 10.1016/0304-4157(90)90003-u. [DOI] [PubMed] [Google Scholar]
  12. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  13. James H. E., Bartling D., Musgrove J. E., Kirwin P. M., Herrmann R. G., Robinson C. Transport of proteins into chloroplasts. Import and maturation of precursors to the 33-, 23-, and 16-kDa proteins of the photosynthetic oxygen-evolving complex. J Biol Chem. 1989 Nov 25;264(33):19573–19576. [PubMed] [Google Scholar]
  14. Jegerschöld C., Virgin I., Styring S. Light-dependent degradation of the D1 protein in photosystem II is accelerated after inhibition of the water splitting reaction. Biochemistry. 1990 Jul 3;29(26):6179–6186. doi: 10.1021/bi00478a010. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Luzikov V. N. Proteolytic control over topogenesis of membrane proteins. FEBS Lett. 1986 May 12;200(2):259–264. doi: 10.1016/0014-5793(86)81148-6. [DOI] [PubMed] [Google Scholar]
  17. Mattoo A. K., Marder J. B., Edelman M. Dynamics of the photosystem II reaction center. Cell. 1989 Jan 27;56(2):241–246. doi: 10.1016/0092-8674(89)90897-0. [DOI] [PubMed] [Google Scholar]
  18. Merchant S., Bogorad L. Rapid degradation of apoplastocyanin in Cu(II)-deficient cells of Chlamydomonas reinhardtii. J Biol Chem. 1986 Dec 5;261(34):15850–15853. [PubMed] [Google Scholar]
  19. Mullet J. E., Klein P. G., Klein R. R. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll apoproteins CP43 and D1 by increasing apoprotein stability. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4038–4042. doi: 10.1073/pnas.87.11.4038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nilsson F., Andersson B., Jansson C. Photosystem II characteristics of a constructed Synechocystis 6803 mutant lacking synthesis of the D1 polypeptide. Plant Mol Biol. 1990 Jun;14(6):1051–1054. doi: 10.1007/BF00019402. [DOI] [PubMed] [Google Scholar]
  21. Ohad I., Kyle D. J., Hirschberg J. Light-dependent degradation of the Q(B)-protein in isolated pea thylakoids. EMBO J. 1985 Jul;4(7):1655–1659. doi: 10.1002/j.1460-2075.1985.tb03833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Olsen L. J., Theg S. M., Selman B. R., Keegstra K. ATP is required for the binding of precursor proteins to chloroplasts. J Biol Chem. 1989 Apr 25;264(12):6724–6729. [PubMed] [Google Scholar]
  23. Ono T. A., Kajikawa H., Inoue Y. Changes in Protein Composition and Mn Abundance in Photosystem II Particles on Photoactivation of the Latent O(2)-Evolving System in Flash-Grown Wheat Leaves. Plant Physiol. 1986 Jan;80(1):85–90. doi: 10.1104/pp.80.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pain D., Kanwar Y. S., Blobel G. Identification of a receptor for protein import into chloroplasts and its localization to envelope contact zones. Nature. 1988 Jan 21;331(6153):232–237. doi: 10.1038/331232a0. [DOI] [PubMed] [Google Scholar]
  25. Polson A., von Wechmar M. B., Fazakerley G. Antibodies to proteins from yolk of immunized hens. Immunol Commun. 1980;9(5):495–514. doi: 10.3109/08820138009066011. [DOI] [PubMed] [Google Scholar]
  26. Rochaix J. D., Erickson J. Function and assembly of photosystem II: genetic and molecular analysis. Trends Biochem Sci. 1988 Feb;13(2):56–59. doi: 10.1016/0968-0004(88)90029-1. [DOI] [PubMed] [Google Scholar]
  27. Schmidt G. W., Mishkind M. L. Rapid degradation of unassembled ribulose 1,5-bisphosphate carboxylase small subunits in chloroplasts. Proc Natl Acad Sci U S A. 1983 May;80(9):2632–2636. doi: 10.1073/pnas.80.9.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schwab A. J., Sebald W., Weiss H. Different pool sizes of the precursor polypeptides of cytochrome oxidase from Neurospora crassa. Eur J Biochem. 1972 Nov 7;30(3):511–516. doi: 10.1111/j.1432-1033.1972.tb02122.x. [DOI] [PubMed] [Google Scholar]
  29. Theg S. M., Bauerle C., Olsen L. J., Selman B. R., Keegstra K. Internal ATP is the only energy requirement for the translocation of precursor proteins across chloroplastic membranes. J Biol Chem. 1989 Apr 25;264(12):6730–6736. [PubMed] [Google Scholar]
  30. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Videira A., Werner S. Assembly kinetics and identification of precursor proteins of complex I from Neurospora crassa. Eur J Biochem. 1989 May 1;181(2):493–502. doi: 10.1111/j.1432-1033.1989.tb14751.x. [DOI] [PubMed] [Google Scholar]
  32. Virgin I., Ghanotakis D. F., Andersson B. Light-induced D1-protein degradation in isolated photosystem II core complexes. FEBS Lett. 1990 Aug 20;269(1):45–48. doi: 10.1016/0014-5793(90)81115-5. [DOI] [PubMed] [Google Scholar]
  33. Yalovsky S., Schuster G., Nechushtai R. The apoprotein precursor of the major light-harvesting complex of photosystem II (LHCIIb) is inserted primarily into stromal lamellae and subsequently migrates to the grana. Plant Mol Biol. 1990 May;14(5):753–764. doi: 10.1007/BF00016508. [DOI] [PubMed] [Google Scholar]
  34. Yamashita T., Butler W. L. Photooxidation by photosystem II of tris-washed chloroplasts. Plant Physiol. 1969 Sep;44(9):1342–1346. doi: 10.1104/pp.44.9.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. de Vitry C., Olive J., Drapier D., Recouvreur M., Wollman F. A. Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii. J Cell Biol. 1989 Sep;109(3):991–1006. doi: 10.1083/jcb.109.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES