Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Feb 2;116(4):1035–1042. doi: 10.1083/jcb.116.4.1035

Induction of proliferation or hypertrophy of chondrocytes in serum-free culture: the role of insulin-like growth factor-I, insulin, or thyroxine

PMCID: PMC2289336  PMID: 1734018

Abstract

In bone forming cartilage in vivo, cells undergo terminal differentiation, whereas most of the cells in normal articular cartilage do not. Chondrocyte hypertrophy can be induced also in vitro by diffusible signals. We have identified growth factors or hormones acting individually on 17-d chick embryo sternal chondrocytes cultured in agarose gels under strictly serum-free conditions. Insulin-like growth factor I or insulin triggered the first steps of chondrocyte maturation, i.e., cell proliferation and increased matrix deposition while the chondrocytic phenotype was maintained. However, cells did not progress to the hypertrophic stage. Proliferation and stimulated collagen production was preceded by a lag period, indicating that synthesis of other components was required before cells became responsive to insulin-like growth factor I or insulin. Very small amounts of FBS exerted effects similar to those of insulin-like growth factor I or insulin. However, FBS could act directly and elicited hypertrophy when constituting greater than 1% of the culture media. Basic FGF has been claimed to be the most potent chondrocyte mitogen, but had negligible effects under serum-free conditions. The same is true for PDGF, a major serum-mitogen. Under the direction of thyroxine, cells did not proliferate but became typical hypertrophic chondrocytes, extensively synthesizing collagen X and alkaline phosphatase.

Full Text

The Full Text of this article is available as a PDF (985.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benya P. D., Shaffer J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982 Aug;30(1):215–224. doi: 10.1016/0092-8674(82)90027-7. [DOI] [PubMed] [Google Scholar]
  2. Bruckner P., Hörler I., Mendler M., Houze Y., Winterhalter K. H., Eich-Bender S. G., Spycher M. A. Induction and prevention of chondrocyte hypertrophy in culture. J Cell Biol. 1989 Nov;109(5):2537–2545. doi: 10.1083/jcb.109.5.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Canalis E., McCarthy T. L., Centrella M. Growth factors and the skeletal system. J Endocrinol Invest. 1989 Sep;12(8):577–584. doi: 10.1007/BF03350764. [DOI] [PubMed] [Google Scholar]
  4. Castagnola P., Dozin B., Moro G., Cancedda R. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro. J Cell Biol. 1988 Feb;106(2):461–467. doi: 10.1083/jcb.106.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cuevas P., Burgos J., Baird A. Basic fibroblast growth factor (FGF) promotes cartilage repair in vivo. Biochem Biophys Res Commun. 1988 Oct 31;156(2):611–618. doi: 10.1016/s0006-291x(88)80887-8. [DOI] [PubMed] [Google Scholar]
  6. Froesch E. R., Schmid C., Schwander J., Zapf J. Actions of insulin-like growth factors. Annu Rev Physiol. 1985;47:443–467. doi: 10.1146/annurev.ph.47.030185.002303. [DOI] [PubMed] [Google Scholar]
  7. Froger-Gaillard B., Hossenlopp P., Adolphe M., Binoux M. Production of insulin-like growth factors and their binding proteins by rabbit articular chondrocytes: relationships with cell multiplication. Endocrinology. 1989 May;124(5):2365–2372. doi: 10.1210/endo-124-5-2365. [DOI] [PubMed] [Google Scholar]
  8. Gannon J. M., Walker G., Fischer M., Carpenter R., Thompson R. C., Jr, Oegema T. R., Jr Localization of type X collagen in canine growth plate and adult canine articular cartilage. J Orthop Res. 1991 Jul;9(4):485–494. doi: 10.1002/jor.1100090404. [DOI] [PubMed] [Google Scholar]
  9. Gibson G. J., Schor S. L., Grant M. E. Effects of matrix macromolecules on chondrocyte gene expression: synthesis of a low molecular weight collagen species by cells cultured within collagen gels. J Cell Biol. 1982 Jun;93(3):767–774. doi: 10.1083/jcb.93.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gospodarowicz D. Fibroblast growth factor. Chemical structure and biologic function. Clin Orthop Relat Res. 1990 Aug;(257):231–248. [PubMed] [Google Scholar]
  11. Heldin C. H., Westermark B. Growth factors as transforming proteins. Eur J Biochem. 1989 Oct 1;184(3):487–496. doi: 10.1111/j.1432-1033.1989.tb15041.x. [DOI] [PubMed] [Google Scholar]
  12. Holtzer H., Abbott J., Lash J., Holtzer S. THE LOSS OF PHENOTYPIC TRAITS BY DIFFERENTIATED CELLS IN VITRO, I. DEDIFFERENTIATION OF CARTILAGE CELLS. Proc Natl Acad Sci U S A. 1960 Dec;46(12):1533–1542. doi: 10.1073/pnas.46.12.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horwitz A. L., Dorfman A. The growth of cartilage cells in soft agar and liquid suspension. J Cell Biol. 1970 May;45(2):434–438. doi: 10.1083/jcb.45.2.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iwamoto M., Shimazu A., Nakashima K., Suzuki F., Kato Y. Reduction of basic fibroblasts growth factor receptor is coupled with terminal differentiation of chondrocytes. J Biol Chem. 1991 Jan 5;266(1):461–467. [PubMed] [Google Scholar]
  15. Kato Y., Iwamoto M., Koike T. Fibroblast growth factor stimulates colony formation of differentiated chondrocytes in soft agar. J Cell Physiol. 1987 Dec;133(3):491–498. doi: 10.1002/jcp.1041330309. [DOI] [PubMed] [Google Scholar]
  16. Kavumpurath S., Hall B. K. Lack of either chondrocyte hypertrophy or osteogenesis in Meckel's cartilage of the embryonic chick exposed to epithelia and to thyroxine in vitro. J Craniofac Genet Dev Biol. 1990;10(3):263–275. [PubMed] [Google Scholar]
  17. LuValle P., Hayashi M., Olsen B. R. Transcriptional regulation of type X collagen during chondrocyte maturation. Dev Biol. 1989 Jun;133(2):613–616. doi: 10.1016/0012-1606(89)90065-1. [DOI] [PubMed] [Google Scholar]
  18. Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990;6:597–641. doi: 10.1146/annurev.cb.06.110190.003121. [DOI] [PubMed] [Google Scholar]
  19. Mayne R., Vail M. S., Mayne P. M., Miller E. J. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci U S A. 1976 May;73(5):1674–1678. doi: 10.1073/pnas.73.5.1674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McGadey J. A tetrazolium method for non-specific alkaline phosphatase. Histochemie. 1970;23(2):180–184. doi: 10.1007/BF00305851. [DOI] [PubMed] [Google Scholar]
  21. Nathan C., Sporn M. Cytokines in context. J Cell Biol. 1991 Jun;113(5):981–986. doi: 10.1083/jcb.113.5.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pawelek J. M. Effects of thyroxine and low oxygen tension on chondrogenic expression in cell culture. Dev Biol. 1969 Jan;19(1):52–72. doi: 10.1016/0012-1606(69)90070-0. [DOI] [PubMed] [Google Scholar]
  23. Quarto R., Dozin B., Tacchetti C., Campanile G., Malfatto C., Cancedda R. In vitro development of hypertrophic chondrocytes starting from selected clones of dedifferentiated cells. J Cell Biol. 1990 Apr;110(4):1379–1386. doi: 10.1083/jcb.110.4.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ross R., Raines E. W., Bowen-Pope D. F. The biology of platelet-derived growth factor. Cell. 1986 Jul 18;46(2):155–169. doi: 10.1016/0092-8674(86)90733-6. [DOI] [PubMed] [Google Scholar]
  25. SALMON W. D., Jr, DAUGHADAY W. H. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med. 1957 Jun;49(6):825–836. [PubMed] [Google Scholar]
  26. SCHLESINGER B., FISHER O. D. Accelerated skeletal development from thyrotoxicosis and thyroid overdosage in childhood. Lancet. 1951 Aug 18;2(6677):289–290. doi: 10.1016/s0140-6736(51)93282-5. [DOI] [PubMed] [Google Scholar]
  27. Sara V. R., Hall K. Insulin-like growth factors and their binding proteins. Physiol Rev. 1990 Jul;70(3):591–614. doi: 10.1152/physrev.1990.70.3.591. [DOI] [PubMed] [Google Scholar]
  28. Scanes C. G., Dunnington E. A., Buonomo F. C., Donoghue D. J., Siegel P. B. Plasma concentrations of insulin like growth factors (IGF-)I and IGF-II in dwarf and normal chickens of high and low weight selected lines. Growth Dev Aging. 1989 Winter;53(4):151–157. [PubMed] [Google Scholar]
  29. Schmid T. M., Linsenmayer T. F. Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol. 1985 Feb;100(2):598–605. doi: 10.1083/jcb.100.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Trippel S. B., Corvol M. T., Dumontier M. F., Rappaport R., Hung H. H., Mankin H. J. Effect of somatomedin-C/insulin-like growth factor I and growth hormone on cultured growth plate and articular chondrocytes. Pediatr Res. 1989 Jan;25(1):76–82. doi: 10.1203/00006450-198901000-00017. [DOI] [PubMed] [Google Scholar]
  31. Tschan T., Höerler I., Houze Y., Winterhalter K. H., Richter C., Bruckner P. Resting chondrocytes in culture survive without growth factors, but are sensitive to toxic oxygen metabolites. J Cell Biol. 1990 Jul;111(1):257–260. doi: 10.1083/jcb.111.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vetter U., Zapf J., Heit W., Helbing G., Heinze E., Froesch E. R., Teller W. M. Human fetal and adult chondrocytes. Effect of insulinlike growth factors I and II, insulin, and growth hormone on clonal growth. J Clin Invest. 1986 Jun;77(6):1903–1908. doi: 10.1172/JCI112518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. von der Mark K., Gauss V., von der Mark H., Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977 Jun 9;267(5611):531–532. doi: 10.1038/267531a0. [DOI] [PubMed] [Google Scholar]
  34. von der Mark K., Glückert K. Biochemische und molekularbiologische Aspekte zur Früherfassung humaner Arthrosen. Orthopade. 1990 Feb;19(1):2–15. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES