Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Jun 2;117(6):1343–1350. doi: 10.1083/jcb.117.6.1343

Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility [published erratum appears in J Cell Biol 1992 Aug;118(3):753]

PMCID: PMC2289508  PMID: 1376732

Abstract

A cDNA encoding a unique hyaluronan receptor has been molecularly cloned from a lambda GT11 3T3 cDNA expression library. Immunoblot analyses of cell lysates, using antibodies to peptides encoded in the cDNA, specifically react with a 58-kD protein. This protein is regulated by the mutant H-ras gene in cells containing a metallothionein promoter H-ras hybrid gene. Further, antibodies to peptide sequences encoded in the cDNA block the increase in locomotion resulting from induction of the mutant H-ras gene in this cell line. In a transblot assay, the bacterially expressed protein binds to biotinylated hyaluronan. Antibodies to peptides encoded in the cDNA react in immunoblot assays with the 58- and 52-kD proteins of a novel hyaluronan receptor complex previously implicated in cell locomotion. Furthermore, antibodies specific to the 58- and 52-kD proteins, which block ras-induced locomotion, also cross-react with the expressed, encoded protein. The gene product described here appears to be a new type of hyaluronan receptor that is involved in cell locomotion. It is named RHAMM, an acronym for receptor for hyaluronan-mediated motility.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barondes S. H. Bifunctional properties of lectins: lectins redefined. Trends Biochem Sci. 1988 Dec;13(12):480–482. doi: 10.1016/0968-0004(88)90235-6. [DOI] [PubMed] [Google Scholar]
  2. Boudreau N., Turley E., Rabinovitch M. Fibronectin, hyaluronan, and a hyaluronan binding protein contribute to increased ductus arteriosus smooth muscle cell migration. Dev Biol. 1991 Feb;143(2):235–247. doi: 10.1016/0012-1606(91)90074-d. [DOI] [PubMed] [Google Scholar]
  3. Brown T. A., Bouchard T., St John T., Wayner E., Carter W. G. Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycan with additional exons. J Cell Biol. 1991 Apr;113(1):207–221. doi: 10.1083/jcb.113.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen W. Y., Grant M. E., Schor A. M., Schor S. L. Differences between adult and foetal fibroblasts in the regulation of hyaluronate synthesis: correlation with migratory activity. J Cell Sci. 1989 Nov;94(Pt 3):577–584. doi: 10.1242/jcs.94.3.577. [DOI] [PubMed] [Google Scholar]
  5. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  6. Choy B. K., McClarty G. A., Wright J. A. Transient elevation of ribonucleotide reductase activity, M2 mRNA and M2 protein in BALB/c 3T3 fibroblasts in the presence of 12-O-tetradecanoylphorbol-13-acetate. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1417–1424. doi: 10.1016/0006-291x(89)90832-2. [DOI] [PubMed] [Google Scholar]
  7. Doege K., Sasaki M., Horigan E., Hassell J. R., Yamada Y. Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J Biol Chem. 1987 Dec 25;262(36):17757–17767. [PubMed] [Google Scholar]
  8. Goetinck P. F., Stirpe N. S., Tsonis P. A., Carlone D. The tandemly repeated sequences of cartilage link protein contain the sites for interaction with hyaluronic acid. J Cell Biol. 1987 Nov;105(5):2403–2408. doi: 10.1083/jcb.105.5.2403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holland E. C., Leung J. O., Drickamer K. Rat liver asialoglycoprotein receptor lacks a cleavable NH2-terminal signal sequence. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7338–7342. doi: 10.1073/pnas.81.23.7338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ikuta K., Takami M., Kim C. W., Honjo T., Miyoshi T., Tagaya Y., Kawabe T., Yodoi J. Human lymphocyte Fc receptor for IgE: sequence homology of its cloned cDNA with animal lectins. Proc Natl Acad Sci U S A. 1987 Feb;84(3):819–823. doi: 10.1073/pnas.84.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krusius T., Gehlsen K. R., Ruoslahti E. A fibroblast chondroitin sulfate proteoglycan core protein contains lectin-like and growth factor-like sequences. J Biol Chem. 1987 Sep 25;262(27):13120–13125. [PubMed] [Google Scholar]
  12. Kuhn L. A., Griffin J. H., Fisher C. L., Greengard J. S., Bouma B. N., España F., Tainer J. A. Elucidating the structural chemistry of glycosaminoglycan recognition by protein C inhibitor. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8506–8510. doi: 10.1073/pnas.87.21.8506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liotta L. A., Mandler R., Murano G., Katz D. A., Gordon R. K., Chiang P. K., Schiffmann E. Tumor cell autocrine motility factor. Proc Natl Acad Sci U S A. 1986 May;83(10):3302–3306. doi: 10.1073/pnas.83.10.3302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Longaker M. T., Chiu E. S., Harrison M. R., Crombleholme T. M., Langer J. C., Duncan B. W., Adzick N. S., Verrier E. D., Stern R. Studies in fetal wound healing. IV. Hyaluronic acid-stimulating activity distinguishes fetal wound fluid from adult wound fluid. Ann Surg. 1989 Nov;210(5):667–672. doi: 10.1097/00000658-198911000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McClelland A., Kühn L. C., Ruddle F. H. The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell. 1984 Dec;39(2 Pt 1):267–274. doi: 10.1016/0092-8674(84)90004-7. [DOI] [PubMed] [Google Scholar]
  16. Neame P. J., Christner J. E., Baker J. R. The primary structure of link protein from rat chondrosarcoma proteoglycan aggregate. J Biol Chem. 1986 Mar 15;261(8):3519–3535. [PubMed] [Google Scholar]
  17. Partin A. W., Isaacs J. T., Treiger B., Coffey D. S. Early cell motility changes associated with an increase in metastatic ability in rat prostatic cancer cells transfected with the v-Harvey-ras oncogene. Cancer Res. 1988 Nov 1;48(21):6050–6053. [PubMed] [Google Scholar]
  18. Rao C. N., Castronovo V., Schmitt M. C., Wewer U. M., Claysmith A. P., Liotta L. A., Sobel M. E. Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry. 1989 Sep 5;28(18):7476–7486. doi: 10.1021/bi00444a047. [DOI] [PubMed] [Google Scholar]
  19. Ruoslahti E., Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell. 1991 Mar 8;64(5):867–869. doi: 10.1016/0092-8674(91)90308-l. [DOI] [PubMed] [Google Scholar]
  20. Schor S. L., Schor A. M., Grey A. M., Chen J., Rushton G., Grant M. E., Ellis I. Mechanism of action of the migration stimulating factor produced by fetal and cancer patient fibroblasts: effect on hyaluronic and synthesis. In Vitro Cell Dev Biol. 1989 Aug;25(8):737–746. doi: 10.1007/BF02623727. [DOI] [PubMed] [Google Scholar]
  21. Shanley D. J., Cossu G., Boettiger D., Holtzer H., Pacifici M. Transformation by Rous sarcoma virus induces similar patterns of glycosaminoglycan synthesis in chick embryo skin fibroblasts and vertebral chondroblasts. J Biol Chem. 1983 Jan 25;258(2):810–816. [PubMed] [Google Scholar]
  22. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  23. Stamenkovic I., Amiot M., Pesando J. M., Seed B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell. 1989 Mar 24;56(6):1057–1062. doi: 10.1016/0092-8674(89)90638-7. [DOI] [PubMed] [Google Scholar]
  24. Stamenkovic I., Aruffo A., Amiot M., Seed B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J. 1991 Feb;10(2):343–348. doi: 10.1002/j.1460-2075.1991.tb07955.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Toole B. P., Munaim S. I., Welles S., Knudson C. B. Hyaluronate-cell interactions and growth factor regulation of hyaluronate synthesis during limb development. Ciba Found Symp. 1989;143:138–285. doi: 10.1002/9780470513774.ch9. [DOI] [PubMed] [Google Scholar]
  26. Trimble W. S., Johnson P. W., Hozumi N., Roder J. C. Inducible cellular transformation by a metallothionein-ras hybrid oncogene leads to natural killer cell susceptibility. Nature. 1986 Jun 19;321(6072):782–784. doi: 10.1038/321782a0. [DOI] [PubMed] [Google Scholar]
  27. Turley E. A., Austen L., Vandeligt K., Clary C. Hyaluronan and a cell-associated hyaluronan binding protein regulate the locomotion of ras-transformed cells. J Cell Biol. 1991 Mar;112(5):1041–1047. doi: 10.1083/jcb.112.5.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Turley E. A., Brassel P., Moore D. A hyaluronan-binding protein shows a partial and temporally regulated codistribution with actin on locomoting chick heart fibroblasts. Exp Cell Res. 1990 Apr;187(2):243–249. doi: 10.1016/0014-4827(90)90087-q. [DOI] [PubMed] [Google Scholar]
  29. Turley E. A. Hyaluronic acid stimulates protein kinase activity in intact cells and in an isolated protein complex. J Biol Chem. 1989 May 25;264(15):8951–8955. [PubMed] [Google Scholar]
  30. Turley E. A., Moore D., Hayden L. J. Characterization of hyaluronate binding proteins isolated from 3T3 and murine sarcoma virus transformed 3T3 cells. Biochemistry. 1987 Jun 2;26(11):2997–3005. doi: 10.1021/bi00385a007. [DOI] [PubMed] [Google Scholar]
  31. Turley E. A. Proteoglycans and cell adhesion. Their putative role during tumorigenesis. Cancer Metastasis Rev. 1984;3(4):325–339. doi: 10.1007/BF00051458. [DOI] [PubMed] [Google Scholar]
  32. Turley E. A. The role of a cell-associated hyaluronan-binding protein in fibroblast behaviour. Ciba Found Symp. 1989;143:121-33; discussion 133-7, 281-5. doi: 10.1002/9780470513774.ch8. [DOI] [PubMed] [Google Scholar]
  33. Turley E. A., Torrance J. Localization of hyaluronate and hyaluronate-binding protein on motile and non-motile fibroblasts. Exp Cell Res. 1985 Nov;161(1):17–28. doi: 10.1016/0014-4827(85)90486-0. [DOI] [PubMed] [Google Scholar]
  34. Turley E., Auersperg N. A hyaluronate binding protein transiently codistributes with p21k-ras in cultured cell lines. Exp Cell Res. 1989 Jun;182(2):340–348. doi: 10.1016/0014-4827(89)90239-5. [DOI] [PubMed] [Google Scholar]
  35. Yow H. K., Wong J. M., Chen H. S., Lee C. G., Davis S., Steele G. D., Jr, Chen L. B. Increased mRNA expression of a laminin-binding protein in human colon carcinoma: complete sequence of a full-length cDNA encoding the protein. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6394–6398. doi: 10.1073/pnas.85.17.6394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zakut-Houri R., Oren M., Bienz B., Lavie V., Hazum S., Givol D. A single gene and a pseudogene for the cellular tumour antigen p53. Nature. 1983 Dec 8;306(5943):594–597. doi: 10.1038/306594a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES