Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Nov 2;119(4):923–933. doi: 10.1083/jcb.119.4.923

The alternatively spliced V region contributes to the differential incorporation of plasma and cellular fibronectins into fibrin clots

PMCID: PMC2289702  PMID: 1358897

Abstract

During blood clot formation in vivo, plasma fibronectin (pFN) is cross- linked to fibrin by coagulation factor XIIIa. Cellular FN (cFN), which localizes to connective tissue, is distinguished from pFN by the inclusion of alternatively spliced segments. To determine if these two FNs are functionally equivalent in blood clotting, the cross-linking of rat pFN and cFN to fibrin was compared in an in vitro clotting assay. Fibrinogen and FN were incubated at physiological ratios in the presence of thrombin and factor XIIIa. Cross-linking of FN to fibrin was monitored by SDS-PAGE and immunoblotting. Over 24 h, cFN was incorporated at a significantly slower rate than pFN and was not completely cross-linked to fibrin at a temperature that favors this interaction (0 degrees C). This difference was observed with purified fibrinogens from human, rat, and bovine and with rat plasma and was maintained even after incubation of pFN with rat fibroblasts for several days. Using the same assay, purified recombinant V(+)-V0 and V(+)-V+ FN dimers resembling pFN and cFN, respectively, showed a similar difference in cross-linking kinetics. These results suggest that the asymmetric distribution of the V region among pFN dimers plays a role in regulating its incorporation into blood clots. In fibrin clots, cFN was converted into a set of cross-linked intermediates distinct from those of pFN. For example, while pFN was initially cross- linked into a pFN-fibrin alpha heterodimer, this product was not a major intermediate in clots formed with cFN. This finding, in conjunction with evidence for the formation of factor XIIIa-catalyzed cFN-cFN cross-links, indicated that cFN molecules interact with each other, and with fibrin, differently from pFN. Together, these results show an important functional distinction between pFN and cFN.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carter W. G., Hakomori S. Isolation of galactoprotein a from hamster embryo fibroblasts and characterization of the carbohydrate unit. Biochemistry. 1979 Feb 20;18(4):730–738. doi: 10.1021/bi00571a027. [DOI] [PubMed] [Google Scholar]
  2. Chernousov M. A., Fogerty F. J., Koteliansky V. E., Mosher D. F. Role of the I-9 and III-1 modules of fibronectin in formation of an extracellular fibronectin matrix. J Biol Chem. 1991 Jun 15;266(17):10851–10858. [PubMed] [Google Scholar]
  3. Clark R. A., Lanigan J. M., DellaPelle P., Manseau E., Dvorak H. F., Colvin R. B. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol. 1982 Nov;79(5):264–269. doi: 10.1111/1523-1747.ep12500075. [DOI] [PubMed] [Google Scholar]
  4. Crabtree G. R., Comeau C. M., Fowlkes D. M., Fornace A. J., Jr, Malley J. D., Kant J. A. Evolution and structure of the fibrinogen genes. Random insertion of introns or selective loss? J Mol Biol. 1985 Sep 5;185(1):1–19. doi: 10.1016/0022-2836(85)90179-2. [DOI] [PubMed] [Google Scholar]
  5. Crabtree G. R., Kant J. A. Organization of the rat gamma-fibrinogen gene: alternative mRNA splice patterns produce the gamma A and gamma B (gamma ') chains of fibrinogen. Cell. 1982 Nov;31(1):159–166. doi: 10.1016/0092-8674(82)90415-9. [DOI] [PubMed] [Google Scholar]
  6. Doolittle R. F. Structural aspects of the fibrinogen to fibrin conversion. Adv Protein Chem. 1973;27:1–109. doi: 10.1016/s0065-3233(08)60446-5. [DOI] [PubMed] [Google Scholar]
  7. Doolittle R. F. The structure and evolution of vertebrate fibrinogen. Ann N Y Acad Sci. 1983 Jun 27;408:13–27. doi: 10.1111/j.1749-6632.1983.tb23231.x. [DOI] [PubMed] [Google Scholar]
  8. Ehrismann R., Chiquet M., Turner D. C. Mode of action of fibronectin in promoting chicken myoblast attachment. Mr = 60,000 gelatin-binding fragment binds native fibronectin. J Biol Chem. 1981 Apr 25;256(8):4056–4062. [PubMed] [Google Scholar]
  9. Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
  10. Fesus L., Metsis M. L., Muszbek L., Koteliansky V. E. Transglutaminase-sensitive glutamine residues of human plasma fibronectin revealed by studying its proteolytic fragments. Eur J Biochem. 1986 Jan 15;154(2):371–374. doi: 10.1111/j.1432-1033.1986.tb09407.x. [DOI] [PubMed] [Google Scholar]
  11. Ffrench-Constant C., Van de Water L., Dvorak H. F., Hynes R. O. Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J Cell Biol. 1989 Aug;109(2):903–914. doi: 10.1083/jcb.109.2.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fujikawa L. S., Foster C. S., Harrist T. J., Lanigan J. M., Colvin R. B. Fibronectin in healing rabbit corneal wounds. Lab Invest. 1981 Aug;45(2):120–129. [PubMed] [Google Scholar]
  13. Furie B., Furie B. C. The molecular basis of blood coagulation. Cell. 1988 May 20;53(4):505–518. doi: 10.1016/0092-8674(88)90567-3. [DOI] [PubMed] [Google Scholar]
  14. Grinnell F., Billingham R. E., Burgess L. Distribution of fibronectin during wound healing in vivo. J Invest Dermatol. 1981 Mar;76(3):181–189. doi: 10.1111/1523-1747.ep12525694. [DOI] [PubMed] [Google Scholar]
  15. Grinnell F., Feld M., Minter D. Fibroblast adhesion to fibrinogen and fibrin substrata: requirement for cold-insoluble globulin (plasma fibronectin). Cell. 1980 Feb;19(2):517–525. doi: 10.1016/0092-8674(80)90526-7. [DOI] [PubMed] [Google Scholar]
  16. Hartman S. C., Mulligan R. C. Two dominant-acting selectable markers for gene transfer studies in mammalian cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8047–8051. doi: 10.1073/pnas.85.21.8047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hayashi M., Yamada K. M. Domain structure of the carboxyl-terminal half of human plasma fibronectin. J Biol Chem. 1983 Mar 10;258(5):3332–3340. [PubMed] [Google Scholar]
  18. Homandberg G. A., Erickson J. W. Model of fibronectin tertiary structure based on studies of interactions between fragments. Biochemistry. 1986 Nov 4;25(22):6917–6925. doi: 10.1021/bi00370a027. [DOI] [PubMed] [Google Scholar]
  19. Hörmann H., Seidl M. Affinity chromatography on immobilized fibrin monomer, III. The fibrin affinity center of fibronectin. Hoppe Seylers Z Physiol Chem. 1980 Sep;361(9):1449–1452. [PubMed] [Google Scholar]
  20. Iwanaga S., Suzuki K., Hashimoto S. Bovine plasma cold-insoluble globulin: gross structure and function. Ann N Y Acad Sci. 1978 Jun 20;312:56–73. doi: 10.1111/j.1749-6632.1978.tb16793.x. [DOI] [PubMed] [Google Scholar]
  21. Jilek F., Hörmann H. Cold-insoluble globulin, II[1,2]. Cyanogen bromide and plasminolysis fragments containing a label introduced by transamidation. Hoppe Seylers Z Physiol Chem. 1977 Sep;358(9):1165–1168. [PubMed] [Google Scholar]
  22. Knox P., Crooks S., Rimmer C. S. Role of fibronectin in the migration of fibroblasts into plasma clots. J Cell Biol. 1986 Jun;102(6):2318–2323. doi: 10.1083/jcb.102.6.2318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lanir N., Ciano P. S., Van de Water L., McDonagh J., Dvorak A. M., Dvorak H. F. Macrophage migration in fibrin gel matrices. II. Effects of clotting factor XIII, fibronectin, and glycosaminoglycan content on cell migration. J Immunol. 1988 Apr 1;140(7):2340–2349. [PubMed] [Google Scholar]
  25. Lorand L. Fibrinoligase: the fibrin-stabilizing factor system of blood plasma. Ann N Y Acad Sci. 1972 Dec 8;202:6–30. doi: 10.1111/j.1749-6632.1972.tb16319.x. [DOI] [PubMed] [Google Scholar]
  26. McDonagh R. P., McDonagh J., Petersen T. E., Thøgersen H. C., Skorstengaard K., Sottrup-Jensen L., Magnusson S., Dell A., Morris H. R. Amino acid sequence of the factor XIIIa acceptor site in bovine plasma fibronectin. FEBS Lett. 1981 May 18;127(2):174–178. doi: 10.1016/0014-5793(81)80198-6. [DOI] [PubMed] [Google Scholar]
  27. McDonald J. A., Kelley D. G., Broekelmann T. J. Role of fibronectin in collagen deposition: Fab' to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. J Cell Biol. 1982 Feb;92(2):485–492. doi: 10.1083/jcb.92.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McKee P. A., Mattock P., Hill R. L. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proc Natl Acad Sci U S A. 1970 Jul;66(3):738–744. doi: 10.1073/pnas.66.3.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Merril C. R., Goldman D., Van Keuren M. L. Gel protein stains: silver stain. Methods Enzymol. 1984;104:441–447. doi: 10.1016/s0076-6879(84)04111-2. [DOI] [PubMed] [Google Scholar]
  30. Molnar J., Lai M. Z., Siefring G. E., Jr, Lorand L. Enzymatic modifications of human plasma fibronectin in relation to opsonizing activity. Biochemistry. 1983 Dec 6;22(25):5704–5709. doi: 10.1021/bi00294a004. [DOI] [PubMed] [Google Scholar]
  31. Morla A., Ruoslahti E. A fibronectin self-assembly site involved in fibronectin matrix assembly: reconstruction in a synthetic peptide. J Cell Biol. 1992 Jul;118(2):421–429. doi: 10.1083/jcb.118.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mosher D. F. Action of fibrin-stabilizing factor on cold-insoluble globulin and alpha2-macroglobulin in clotting plasma. J Biol Chem. 1976 Mar 25;251(6):1639–1645. [PubMed] [Google Scholar]
  33. Mosher D. F. Cross-linking of cold-insoluble globulin by fibrin-stabilizing factor. J Biol Chem. 1975 Aug 25;250(16):6614–6621. [PubMed] [Google Scholar]
  34. Mosher D. F., Johnson R. B. Specificity of fibronectin--fibrin cross-linking. Ann N Y Acad Sci. 1983 Jun 27;408:583–594. doi: 10.1111/j.1749-6632.1983.tb23275.x. [DOI] [PubMed] [Google Scholar]
  35. Okada M., Blombäck B., Chang M. D., Horowitz B. Fibronectin and fibrin gel structure. J Biol Chem. 1985 Feb 10;260(3):1811–1820. [PubMed] [Google Scholar]
  36. Parameswaran K. N., Velasco P. T., Wilson J., Lorand L. Labeling of epsilon-lysine crosslinking sites in proteins with peptide substrates of factor XIIIa and transglutaminase. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8472–8475. doi: 10.1073/pnas.87.21.8472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Patel R. S., Odermatt E., Schwarzbauer J. E., Hynes R. O. Organization of the fibronectin gene provides evidence for exon shuffling during evolution. EMBO J. 1987 Sep;6(9):2565–2572. doi: 10.1002/j.1460-2075.1987.tb02545.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Paul J. I., Schwarzbauer J. E., Tamkun J. W., Hynes R. O. Cell-type-specific fibronectin subunits generated by alternative splicing. J Biol Chem. 1986 Sep 15;261(26):12258–12265. [PubMed] [Google Scholar]
  39. Richter H., Seidl M., Hörmann H. Location of heparin-binding sites of fibronectin. Detection of a hitherto unrecognized transamidase sensitive site. Hoppe Seylers Z Physiol Chem. 1981 Apr;362(4):399–408. doi: 10.1515/bchm2.1981.362.1.399. [DOI] [PubMed] [Google Scholar]
  40. Schwarzbauer J. E. Identification of the fibronectin sequences required for assembly of a fibrillar matrix. J Cell Biol. 1991 Jun;113(6):1463–1473. doi: 10.1083/jcb.113.6.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schwarzbauer J. E., Patel R. S., Fonda D., Hynes R. O. Multiple sites of alternative splicing of the rat fibronectin gene transcript. EMBO J. 1987 Sep;6(9):2573–2580. doi: 10.1002/j.1460-2075.1987.tb02547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schwarzbauer J. E., Paul J. I., Hynes R. O. On the origin of species of fibronectin. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1424–1428. doi: 10.1073/pnas.82.5.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schwarzbauer J. E., Spencer C. S., Wilson C. L. Selective secretion of alternatively spliced fibronectin variants. J Cell Biol. 1989 Dec;109(6 Pt 2):3445–3453. doi: 10.1083/jcb.109.6.3445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Seidl M., Hörmann H. Affinity chromatography on immobilized fibrin monomer, IV. Two fibrin-binding peptides of a chymotryptic digest of human plasma fibronectin. Hoppe Seylers Z Physiol Chem. 1983 Jan;364(1):83–92. doi: 10.1515/bchm2.1983.364.1.83. [DOI] [PubMed] [Google Scholar]
  45. Sekiguchi K., Fukuda M., Hakomori S. Domain structure of hamster plasma fibronectin. Isolation and characterization of four functionally distinct domains and their unequal distribution between two subunit polypeptides. J Biol Chem. 1981 Jun 25;256(12):6452–6462. [PubMed] [Google Scholar]
  46. Sottile J., Schwarzbauer J., Selegue J., Mosher D. F. Five type I modules of fibronectin form a functional unit that binds to fibroblasts and Staphylococcus aureus. J Biol Chem. 1991 Jul 15;266(20):12840–12843. [PubMed] [Google Scholar]
  47. Suissa M. Spectrophotometric quantitation of silver grains eluted from autoradiograms. Anal Biochem. 1983 Sep;133(2):511–514. doi: 10.1016/0003-2697(83)90117-3. [DOI] [PubMed] [Google Scholar]
  48. Vuento M., Wrann M., Ruoslahti E. Similarity of fibronectins isolated from human plasma and spent fibroblast culture medium. FEBS Lett. 1977 Oct 15;82(2):227–231. doi: 10.1016/0014-5793(77)80590-5. [DOI] [PubMed] [Google Scholar]
  49. Williams E. C., Janmey P. A., Ferry J. D., Mosher D. F. Conformational states of fibronectin. Effects of pH, ionic strength, and collagen binding. J Biol Chem. 1982 Dec 25;257(24):14973–14978. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES