Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Jul 2;118(2):359–368. doi: 10.1083/jcb.118.2.359

Biochemical and immunological characterization of p190-calmodulin complex from vertebrate brain: a novel calmodulin-binding myosin

PMCID: PMC2290054  PMID: 1378447

Abstract

We have recently identified a novel 190-kD calmodulin-binding protein (p190) associated with the actin-based cytoskeleton from mammalian brain (Larson, R. E., D. E. Pitta, and J. A. Ferro. 1988. Braz. J. Med. Biol. Res. 21:213-217; Larson, R. E., F. S. Espindola, and E. M. Espreafico. 1990. J. Neurochem. 54:1288-1294). These studies indicated that p190 is a phosphoprotein substrate for calmodulin-dependent kinase II and has calcium- and calmodulin-stimulated MgATPase activity. We now have biochemical and immunological evidence that this protein is a novel calmodulin-binding myosin whose properties include (a) Ca2+ dependent action activation of its Mg-ATPase activity, which seems to be mediated by Ca2+ binding directly to calmodulin(s) associated with p190 (maximal activation by actin requires the presence of Ca2+ and is further augmented by addition of exogenous calmodulin); (b) ATP- sensitive cross-linking of skeletal muscle F-actin, as demonstrated by the low-speed actin sedimentation assay; and (c) cross-reactivity with mAbs specific for epitopes in the head of brush border myosin I. We also show that p190 has properties distinct from conventional brain myosin II and brush border myosin I, including (a) separation of p190 from brain myosin II by gel filtration on a Sephacryl S-500 column; (b) lack by p190 of K(+)-stimulated EDTA ATPase activity characteristic of most myosins; (c) lack of immunological cross-reactivity of polyclonal antibodies which recognize p190 and brain myosin II, respectively; (d) lack of immunological recognition of p190 by mAbs against an epitope in the tail region of brush border myosin I; and (e) distinctive proteolytic susceptibility to calpain. A survey of rat tissues by immunoblotting indicated that p190 is expressed predominantly in the adult forebrain and cerebellum, and could be detected in embryos 11 d post coitus. Immunocytochemical studies showed p190 to be present in the perikarya and dendritic extensions of Purkinje cells of the cerebellum.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Augustine G. J., Charlton M. P., Smith S. J. Calcium action in synaptic transmitter release. Annu Rev Neurosci. 1987;10:633–693. doi: 10.1146/annurev.ne.10.030187.003221. [DOI] [PubMed] [Google Scholar]
  2. Barylko B., Sobieszek A. Phosphorylation and actin activation of brain myosin. EMBO J. 1983;2(3):369–374. doi: 10.1002/j.1460-2075.1983.tb01432.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barylko B., Wagner M. C., Reizes O., Albanesi J. P. Purification and characterization of a mammalian myosin I. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):490–494. doi: 10.1073/pnas.89.2.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beach R. L., Kelly P. T., Babitch J. A., Cotman C. W. Identification of myosin in isolated synaptic junctions. Brain Res. 1981 Nov 23;225(1):75–93. doi: 10.1016/0006-8993(81)90319-x. [DOI] [PubMed] [Google Scholar]
  5. Bernstein B. W., Bamburg J. R. Cycling of actin assembly in synaptosomes and neurotransmitter release. Neuron. 1989 Aug;3(2):257–265. doi: 10.1016/0896-6273(89)90039-1. [DOI] [PubMed] [Google Scholar]
  6. Bridgman P. C., Dailey M. E. The organization of myosin and actin in rapid frozen nerve growth cones. J Cell Biol. 1989 Jan;108(1):95–109. doi: 10.1083/jcb.108.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carboni J. M., Conzelman K. A., Adams R. A., Kaiser D. A., Pollard T. D., Mooseker M. S. Structural and immunological characterization of the myosin-like 110-kD subunit of the intestinal microvillar 110K-calmodulin complex: evidence for discrete myosin head and calmodulin-binding domains. J Cell Biol. 1988 Nov;107(5):1749–1757. doi: 10.1083/jcb.107.5.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collins K., Sellers J. R., Matsudaira P. Calmodulin dissociation regulates brush border myosin I (110-kD-calmodulin) mechanochemical activity in vitro. J Cell Biol. 1990 Apr;110(4):1137–1147. doi: 10.1083/jcb.110.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coluccio L. M. Identification of the microvillar 110-kDa calmodulin complex (myosin-1) in kidney. Eur J Cell Biol. 1991 Dec;56(2):286–294. [PubMed] [Google Scholar]
  10. Forscher P., Smith S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol. 1988 Oct;107(4):1505–1516. doi: 10.1083/jcb.107.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fox J. E., Goll D. E., Reynolds C. C., Phillips D. R. Identification of two proteins (actin-binding protein and P235) that are hydrolyzed by endogenous Ca2+-dependent protease during platelet aggregation. J Biol Chem. 1985 Jan 25;260(2):1060–1066. [PubMed] [Google Scholar]
  12. Fukui Y., Lynch T. J., Brzeska H., Korn E. D. Myosin I is located at the leading edges of locomoting Dictyostelium amoebae. Nature. 1989 Sep 28;341(6240):328–331. doi: 10.1038/341328a0. [DOI] [PubMed] [Google Scholar]
  13. Gopalakrishna R., Anderson W. B. Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1982 Jan 29;104(2):830–836. doi: 10.1016/0006-291x(82)90712-4. [DOI] [PubMed] [Google Scholar]
  14. Harris A. S., Morrow J. S. Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3009–3013. doi: 10.1073/pnas.87.8.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  16. Hayden S. M., Wolenski J. S., Mooseker M. S. Binding of brush border myosin I to phospholipid vesicles. J Cell Biol. 1990 Aug;111(2):443–451. doi: 10.1083/jcb.111.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heinonen J. K., Lahti R. J. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem. 1981 May 15;113(2):313–317. doi: 10.1016/0003-2697(81)90082-8. [DOI] [PubMed] [Google Scholar]
  18. Hobbs D. S., Frederiksen D. W. Physical and enzymatic properties of myosin from porcine brain. Biophys J. 1980 Nov;32(2):705–718. doi: 10.1016/S0006-3495(80)85011-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
  20. Johnston G. C., Prendergast J. A., Singer R. A. The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J Cell Biol. 1991 May;113(3):539–551. doi: 10.1083/jcb.113.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kandel E. R. Calcium and the control of synaptic strength by learning. Nature. 1981 Oct 29;293(5835):697–700. doi: 10.1038/293697a0. [DOI] [PubMed] [Google Scholar]
  22. Kater S. B., Mattson M. P., Cohan C., Connor J. Calcium regulation of the neuronal growth cone. Trends Neurosci. 1988 Jul;11(7):315–321. doi: 10.1016/0166-2236(88)90094-x. [DOI] [PubMed] [Google Scholar]
  23. Kennedy M. B. Regulation of synaptic transmission in the central nervous system: long-term potentiation. Cell. 1989 Dec 1;59(5):777–787. doi: 10.1016/0092-8674(89)90601-6. [DOI] [PubMed] [Google Scholar]
  24. Kiehart D. P. Molecular genetic dissection of myosin heavy chain function. Cell. 1990 Feb 9;60(3):347–350. doi: 10.1016/0092-8674(90)90583-z. [DOI] [PubMed] [Google Scholar]
  25. Kuczmarski E. R., Rosenbaum J. L. Studies on the organization and localization of actin and myosin in neurons. J Cell Biol. 1979 Feb;80(2):356–371. doi: 10.1083/jcb.80.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lankford K. L., Letourneau P. C. Evidence that calcium may control neurite outgrowth by regulating the stability of actin filaments. J Cell Biol. 1989 Sep;109(3):1229–1243. doi: 10.1083/jcb.109.3.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Larson R. E., Espindola F. S., Espreafico E. M. Calmodulin-binding proteins and calcium/calmodulin-regulated enzyme activities associated with brain actomyosin. J Neurochem. 1990 Apr;54(4):1288–1294. doi: 10.1111/j.1471-4159.1990.tb01961.x. [DOI] [PubMed] [Google Scholar]
  28. Larson R. E., Pitta D. E., Ferro J. A. A novel 190 kDa calmodulin-binding protein associated with brain actomyosin. Braz J Med Biol Res. 1988;21(2):213–217. [PubMed] [Google Scholar]
  29. Letourneau P. C. Immunocytochemical evidence for colocalization in neurite growth cones of actin and myosin and their relationship to cell--substratum adhesions. Dev Biol. 1981 Jul 15;85(1):113–122. doi: 10.1016/0012-1606(81)90240-2. [DOI] [PubMed] [Google Scholar]
  30. Malik M. N., Fenko M. D., Scotto L., Merz P., Rothman J., Tuzio H., Wisniewski H. M. Purification and characterization of myosin from calf brain. J Neurochem. 1983 Jun;40(6):1620–1629. doi: 10.1111/j.1471-4159.1983.tb08135.x. [DOI] [PubMed] [Google Scholar]
  31. Matsumura S., Ohmori K., Chiba T., Kumon A. Physical, enzymatic, and contractile properties of brain myosin with anti-brain myosin Fab fragment bound on its tail. J Biochem. 1989 May;105(5):803–812. doi: 10.1093/oxfordjournals.jbchem.a122749. [DOI] [PubMed] [Google Scholar]
  32. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  33. Mercer J. A., Seperack P. K., Strobel M. C., Copeland N. G., Jenkins N. A. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature. 1991 Feb 21;349(6311):709–713. doi: 10.1038/349709a0. [DOI] [PubMed] [Google Scholar]
  34. Montell C., Rubin G. M. The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell. 1988 Mar 11;52(5):757–772. doi: 10.1016/0092-8674(88)90413-8. [DOI] [PubMed] [Google Scholar]
  35. Ochs S. Calcium and the mechanism of axoplasmic transport. Fed Proc. 1982 May;41(7):2301–2306. [PubMed] [Google Scholar]
  36. Olmsted J. B. Analysis of cytoskeletal structures using blot-purified monospecific antibodies. Methods Enzymol. 1986;134:467–472. doi: 10.1016/0076-6879(86)34112-0. [DOI] [PubMed] [Google Scholar]
  37. Peterson G. L. Determination of total protein. Methods Enzymol. 1983;91:95–119. doi: 10.1016/s0076-6879(83)91014-5. [DOI] [PubMed] [Google Scholar]
  38. Pollard T. D., Cooper J. A. Methods to characterize actin filament networks. Methods Enzymol. 1982;85(Pt B):211–233. doi: 10.1016/0076-6879(82)85022-2. [DOI] [PubMed] [Google Scholar]
  39. Pollard T. D., Doberstein S. K., Zot H. G. Myosin-I. Annu Rev Physiol. 1991;53:653–681. doi: 10.1146/annurev.ph.53.030191.003253. [DOI] [PubMed] [Google Scholar]
  40. Ratner N., Mahler H. R. Structural organization of filamentous proteins in postsynaptic density. Biochemistry. 1983 May 10;22(10):2446–2453. doi: 10.1021/bi00279a022. [DOI] [PubMed] [Google Scholar]
  41. Smith S. J., Augustine G. J. Calcium ions, active zones and synaptic transmitter release. Trends Neurosci. 1988 Oct;11(10):458–464. doi: 10.1016/0166-2236(88)90199-3. [DOI] [PubMed] [Google Scholar]
  42. Smith S. J. Neuronal cytomechanics: the actin-based motility of growth cones. Science. 1988 Nov 4;242(4879):708–715. doi: 10.1126/science.3055292. [DOI] [PubMed] [Google Scholar]
  43. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  44. Swanljung-Collins H., Collins J. H. Ca2+ stimulates the Mg2(+)-ATPase activity of brush border myosin I with three or four calmodulin light chains but inhibits with less than two bound. J Biol Chem. 1991 Jan 15;266(2):1312–1319. [PubMed] [Google Scholar]
  45. Tanaka E., Fukunaga K., Yamamoto H., Iwasa T., Miyamoto E. Regulation of the actin-activated Mg-ATPase of brain myosin via phosphorylation by the brain Ca2+, calmodulin-dependent protein kinases. J Neurochem. 1986 Jul;47(1):254–262. doi: 10.1111/j.1471-4159.1986.tb02857.x. [DOI] [PubMed] [Google Scholar]
  46. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wang K. K., Villalobo A., Roufogalis B. D. Calmodulin-binding proteins as calpain substrates. Biochem J. 1989 Sep 15;262(3):693–706. doi: 10.1042/bj2620693. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES