Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Mar;17(3):1572–1579. doi: 10.1128/mcb.17.3.1572

Differential binding of the Bombyx silk gland-specific factor SGFB to its target DNA sequence drives posterior-cell-restricted expression.

B Horard 1, E Julien 1, P Nony 1, A Garel 1, P Couble 1
PMCID: PMC231883  PMID: 9032285

Abstract

The gene encoding the silk protein P25 in Bombyx mori is expressed in the posterior silk gland (PSG) cells and repressed in the middle silk gland (MSG) cells. To identify the factors involved in this transcription-dependent spatial restriction, we examined the P25 chromatin in PSG and MSG nuclei by DNase I-aided ligation-mediated PCR and analyzed the expression of various P25-lacZ constructs in biolistically treated silk glands. P25 promoter activation depends on two cis-acting elements. One coincides with the target sequence of SGFB, a silk gland-specific factor present in all silk gland nuclei, but bound to its target DNA sequence in only PSG cells. The interaction of the other element with a factor that we named PSGF is also exclusive to PSG cells. Placed ahead of a non-P25-related basal promoter, the SGFB and PSGF elements are sufficient to drive posterior-cell transcription. Collectively, our data support the hypothesis that the spatial restriction of P25 expression is driven by the stabilization of SGFB onto its target sequence by the action of PSGF.

Full Text

The Full Text of this article is available as a PDF (450.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bello B., Couble P. Specific expression of a silk-encoding gene of Bombyx in the anterior salivary gland of Drosophila. Nature. 1990 Aug 2;346(6283):480–482. doi: 10.1038/346480a0. [DOI] [PubMed] [Google Scholar]
  2. Couble P., Chevillard M., Moine A., Ravel-Chapuis P., Prudhomme J. C. Structural organization of the P25 gene of Bombyx mori and comparative analysis of its 5' flanking DNA with that of the fibroin gene. Nucleic Acids Res. 1985 Mar 11;13(5):1801–1814. doi: 10.1093/nar/13.5.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Couble P., Moine A., Garel A., Prudhomme J. C. Developmental variations of a nonfibroin mRNA of Bombyx mori silkgland, encoding for a low-molecular-weight silk protein. Dev Biol. 1983 Jun;97(2):398–407. doi: 10.1016/0012-1606(83)90096-9. [DOI] [PubMed] [Google Scholar]
  4. Durand B., Drevet J., Couble P. P25 gene regulation in Bombyx mori silk gland: two promoter-binding factors have distinct tissue and developmental specificities. Mol Cell Biol. 1992 Dec;12(12):5768–5777. doi: 10.1128/mcb.12.12.5768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fukuta M., Matsuno K., Hui C. C., Nagata T., Takiya S., Xu P. X., Ueno K., Suzuki Y. Molecular cloning of a POU domain-containing factor involved in the regulation of the Bombyx sericin-1 gene. J Biol Chem. 1993 Sep 15;268(26):19471–19475. [PubMed] [Google Scholar]
  6. Garrity P. A., Wold B. J. Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprinting. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1021–1025. doi: 10.1073/pnas.89.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gerster T., Matthias P., Thali M., Jiricny J., Schaffner W. Cell type-specificity elements of the immunoglobulin heavy chain gene enhancer. EMBO J. 1987 May;6(5):1323–1330. doi: 10.1002/j.1460-2075.1987.tb02371.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glaser R. L., Wolfner M. F., Lis J. T. Spatial and temporal pattern of hsp26 expression during normal development. EMBO J. 1986 Apr;5(4):747–754. doi: 10.1002/j.1460-2075.1986.tb04277.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Horard B., Bello B., Abraham E. G., Coulon-Bublex M., Garel A., Mounier N. A cytoplasmic actin gene from the silkworm Bombyx mori is expressed in tissues of endodermal origin and previtellogenic germ cells of transgenic Drosophila. Insect Mol Biol. 1993;2(3):175–183. doi: 10.1111/j.1365-2583.1993.tb00137.x. [DOI] [PubMed] [Google Scholar]
  10. Hui C. C., Matsuno K., Suzuki Y. Fibroin gene promoter contains a cluster of homeodomain binding sites that interact with three silk gland factors. J Mol Biol. 1990 Jun 20;213(4):651–670. doi: 10.1016/S0022-2836(05)80253-0. [DOI] [PubMed] [Google Scholar]
  11. Hui C. C., Suzuki Y. Enhancement of transcription from the Ad2 major late promoter by upstream elements of the fibroin- and sericin-1-encoding genes in silk gland extracts. Gene. 1989 Dec 28;85(2):403–411. doi: 10.1016/0378-1119(89)90433-2. [DOI] [PubMed] [Google Scholar]
  12. Janson L., Pettersson U. Cooperative interactions between transcription factors Sp1 and OTF-1. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4732–4736. doi: 10.1073/pnas.87.12.4732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kikuchi Y., Mori K., Suzuki S., Yamaguchi K., Mizuno S. Structure of the Bombyx mori fibroin light-chain-encoding gene: upstream sequence elements common to the light and heavy chain. Gene. 1992 Jan 15;110(2):151–158. doi: 10.1016/0378-1119(92)90642-3. [DOI] [PubMed] [Google Scholar]
  14. Kondo K., Aoshima Y., Hagiwara T., Ueda H., Mizuno S. Tissue-specific and periodic changes in the nuclease sensitivity of the fibroin gene chromatin in the silkworm Bombyx mori. J Biol Chem. 1987 Apr 15;262(11):5271–5279. [PubMed] [Google Scholar]
  15. Mach V., Takiya S., Ohno K., Handa H., Imai T., Suzuki Y. Silk gland factor-1 involved in the regulation of Bombyx sericin-1 gene contains fork head motif. J Biol Chem. 1995 Apr 21;270(16):9340–9346. doi: 10.1074/jbc.270.16.9340. [DOI] [PubMed] [Google Scholar]
  16. Mangé A., Julien E., Prudhomme J. C., Couble P. A strong inhibitory element down-regulates SRE-stimulated transcription of the A3 cytoplasmic actin gene of Bombyx mori. J Mol Biol. 1997 Jan 24;265(3):266–274. doi: 10.1006/jmbi.1996.0734. [DOI] [PubMed] [Google Scholar]
  17. McKnight S. L. Transcription revisited: a commentary on the 1995 Cold Spring Harbor Laboratory meeting, "Mechanisms of Eukaryotic Transcription". Genes Dev. 1996 Feb 15;10(4):367–381. doi: 10.1101/gad.10.4.367. [DOI] [PubMed] [Google Scholar]
  18. Mialhe E., Miller L. H. Biolistic techniques for transfection of mosquito embryos (Anopheles gambiae). Biotechniques. 1994 May;16(5):924–931. [PubMed] [Google Scholar]
  19. Mirkovitch J., Decker T., Darnell J. E., Jr Interferon induction of gene transcription analyzed by in vivo footprinting. Mol Cell Biol. 1992 Jan;12(1):1–9. doi: 10.1128/mcb.12.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mueller P. R., Wold B. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science. 1989 Nov 10;246(4931):780–786. doi: 10.1126/science.2814500. [DOI] [PubMed] [Google Scholar]
  21. Nony P., Prudhomme J. C., Couble P. Regulation of the P25 gene transcription in the silk gland of Bombyx. Biol Cell. 1995;84(1-2):43–52. doi: 10.1016/0248-4900(96)81317-7. [DOI] [PubMed] [Google Scholar]
  22. Rosenthal N. Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol. 1987;152:704–720. doi: 10.1016/0076-6879(87)52075-4. [DOI] [PubMed] [Google Scholar]
  23. Schier A. F., Gehring W. J. Analysis of a fushi tarazu autoregulatory element: multiple sequence elements contribute to enhancer activity. EMBO J. 1993 Mar;12(3):1111–1119. doi: 10.1002/j.1460-2075.1993.tb05752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Takiya S., Hui C. C., Suzuki Y. A contribution of the core-promoter and its surrounding regions to the preferential transcription of the fibroin gene in posterior silk gland extracts. EMBO J. 1990 Feb;9(2):489–496. doi: 10.1002/j.1460-2075.1990.tb08135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tanaka K., Mori K., Mizuno S. Immunological identification of the major disulfide-linked light component of silk fibroin. J Biochem. 1993 Jul;114(1):1–4. doi: 10.1093/oxfordjournals.jbchem.a124122. [DOI] [PubMed] [Google Scholar]
  26. Tjian R., Maniatis T. Transcriptional activation: a complex puzzle with few easy pieces. Cell. 1994 Apr 8;77(1):5–8. doi: 10.1016/0092-8674(94)90227-5. [DOI] [PubMed] [Google Scholar]
  27. Tsukiyama T., Becker P. B., Wu C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature. 1994 Feb 10;367(6463):525–532. doi: 10.1038/367525a0. [DOI] [PubMed] [Google Scholar]
  28. Waga S., Mizuno S. Different behavior of chromatin domains encompassing fibroin heavy-chain gene in active, temporarily inactive, and permanently inactive transcriptional states in silk gland nuclei. J Biol Chem. 1993 Mar 25;268(9):6429–6436. [PubMed] [Google Scholar]
  29. Wright K. L., Vilen B. J., Itoh-Lindstrom Y., Moore T. L., Li G., Criscitiello M., Cogswell P., Clarke J. B., Ting J. P. CCAAT box binding protein NF-Y facilitates in vivo recruitment of upstream DNA binding transcription factors. EMBO J. 1994 Sep 1;13(17):4042–4053. doi: 10.1002/j.1460-2075.1994.tb06721.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Xiao H., Perisic O., Lis J. T. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell. 1991 Feb 8;64(3):585–593. doi: 10.1016/0092-8674(91)90242-q. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES