Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Jul;17(7):3966–3976. doi: 10.1128/mcb.17.7.3966

Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog.

M Lambert 1, S Blanchin-Roland 1, F Le Louedec 1, A Lepingle 1, C Gaillardin 1
PMCID: PMC232249  PMID: 9199331

Abstract

Depending on the pH of the growth medium, the yeast Yarrowia lipolytica secretes both an acidic proteinase and an alkaline proteinase, the synthesis of which is also controlled by carbon, nitrogen, and sulfur availability, as well as by the presence of extracellular proteins. Recessive mutations at four unlinked loci, named PAL1 to PAL4, were isolated which prevent alkaline proteinase derepression under conditions of carbon and nitrogen limitation at pH 6.8. These mutations markedly affect mating and sporulation. A dominant suppressor of all four PAL mutations was isolated from a wild-type genomic library, which turned out to be a C-terminally truncated form of a 585-residue transcriptional factor of the His2Cys2 zinc finger family, which we propose to call YlRim101p. Another C-terminally truncated version of YlRim101p (419 residues) is encoded by the dominant RPH2 mutation previously isolated as expressing alkaline protease independently of the pH. YlRim101p is homologous to the transcriptional activators Rim101p of Saccharomyces cerevisiae, required for entry into meiosis, and PacC of Aspergillus nidulans and Penicillium chrysogenum, which were recently shown to mediate regulation by ambient pH. YlRim101p appears essential for mating and sporulation and for alkaline proteinase derepression. YlRIM101 expression is autoregulated, maximal at alkaline pH, and strongly impaired by PAL mutations.

Full Text

The Full Text of this article is available as a PDF (466.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahearn D. G., Meyers S. P., Nichols R. A. Extracellular proteinases of yeasts and yeastlike fungi. Appl Microbiol. 1968 Sep;16(9):1370–1374. doi: 10.1128/am.16.9.1370-1374.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arst H. N., Jr, Bignell E., Tilburn J. Two new genes involved in signalling ambient pH in Aspergillus nidulans. Mol Gen Genet. 1994 Dec 15;245(6):787–790. doi: 10.1007/BF00297286. [DOI] [PubMed] [Google Scholar]
  3. Berg J. M. Zinc finger domains: hypotheses and current knowledge. Annu Rev Biophys Biophys Chem. 1990;19:405–421. doi: 10.1146/annurev.bb.19.060190.002201. [DOI] [PubMed] [Google Scholar]
  4. Blanchin-Roland S., Cordero Otero R. R., Gaillardin C. Two upstream activation sequences control the expression of the XPR2 gene in the yeast Yarrowia lipolytica. Mol Cell Biol. 1994 Jan;14(1):327–338. doi: 10.1128/mcb.14.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boisramé A., Beckerich J. M., Gaillardin C. Sls1p, an endoplasmic reticulum component, is involved in the protein translocation process in the yeast Yarrowia lipolytica. J Biol Chem. 1996 May 17;271(20):11668–11675. doi: 10.1074/jbc.271.20.11668. [DOI] [PubMed] [Google Scholar]
  6. Caddick M. X., Brownlee A. G., Arst H. N., Jr Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol Gen Genet. 1986 May;203(2):346–353. doi: 10.1007/BF00333978. [DOI] [PubMed] [Google Scholar]
  7. Cohen B. L. Regulation of intracellular and extracellular neutral and alkaline proteases in Aspergillus nidulans. J Gen Microbiol. 1973 Dec;79(2):311–320. doi: 10.1099/00221287-79-2-311. [DOI] [PubMed] [Google Scholar]
  8. Cutler J. E. Putative virulence factors of Candida albicans. Annu Rev Microbiol. 1991;45:187–218. doi: 10.1146/annurev.mi.45.100191.001155. [DOI] [PubMed] [Google Scholar]
  9. DORN G. GENETIC ANALYSIS OF THE PHOSPHATASES IN ASPERGILLUS NIDULANS. Genet Res. 1965 Feb;6:13–26. doi: 10.1017/s0016672300003943. [DOI] [PubMed] [Google Scholar]
  10. Davidow L. S., O'Donnell M. M., Kaczmarek F. S., Pereira D. A., DeZeeuw J. R., Franke A. E. Cloning and sequencing of the alkaline extracellular protease gene of Yarrowia lipolytica. J Bacteriol. 1987 Oct;169(10):4621–4629. doi: 10.1128/jb.169.10.4621-4629.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Denison S. H., Orejas M., Arst H. N., Jr Signaling of ambient pH in Aspergillus involves a cysteine protease. J Biol Chem. 1995 Dec 1;270(48):28519–28522. doi: 10.1074/jbc.270.48.28519. [DOI] [PubMed] [Google Scholar]
  12. Fabre E., Nicaud J. M., Lopez M. C., Gaillardin C. Role of the proregion in the production and secretion of the Yarrowia lipolytica alkaline extracellular protease. J Biol Chem. 1991 Feb 25;266(6):3782–3790. [PubMed] [Google Scholar]
  13. Fabre E., Tharaud C., Gaillardin C. Intracellular transit of a yeast protease is rescued by trans-complementation with its prodomain. J Biol Chem. 1992 Jul 25;267(21):15049–15055. [PubMed] [Google Scholar]
  14. Fairhead C., Dujon B. Transcript map of two regions from chromosome XI of Saccharomyces cerevisiae for interpretation of systematic sequencing results. Yeast. 1994 Nov;10(11):1403–1413. doi: 10.1002/yea.320101103. [DOI] [PubMed] [Google Scholar]
  15. Fournier P., Abbas A., Chasles M., Kudla B., Ogrydziak D. M., Yaver D., Xuan J. W., Peito A., Ribet A. M., Feynerol C. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4912–4916. doi: 10.1073/pnas.90.11.4912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Germaine G. R., Tellefson L. M. Effect of human saliva on glucose uptake by Streptococcus mutans and other oral microorganisms. Infect Immun. 1981 Feb;31(2):598–607. doi: 10.1128/iai.31.2.598-607.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. He F., Beckerich J. M., Gaillardin C. A mutant of 7SL RNA in Yarrowia lipolytica affecting the synthesis of a secreted protein. J Biol Chem. 1992 Jan 25;267(3):1932–1937. [PubMed] [Google Scholar]
  18. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  19. Hube B., Monod M., Schofield D. A., Brown A. J., Gow N. A. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol. 1994 Oct;14(1):87–99. doi: 10.1111/j.1365-2958.1994.tb01269.x. [DOI] [PubMed] [Google Scholar]
  20. Jacobs G. H. Determination of the base recognition positions of zinc fingers from sequence analysis. EMBO J. 1992 Dec;11(12):4507–4517. doi: 10.1002/j.1460-2075.1992.tb05552.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jarai G., Buxton F. Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Curr Genet. 1994 Sep;26(3):238–244. doi: 10.1007/BF00309554. [DOI] [PubMed] [Google Scholar]
  22. Lemesle-Varloot L., Henrissat B., Gaboriaud C., Bissery V., Morgat A., Mornon J. P. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie. 1990 Aug;72(8):555–574. doi: 10.1016/0300-9084(90)90120-6. [DOI] [PubMed] [Google Scholar]
  23. MacCabe A. P., Van den Hombergh J. P., Tilburn J., Arst H. N., Jr, Visser J. Identification, cloning and analysis of the Aspergillus niger gene pacC, a wide domain regulatory gene responsive to ambient pH. Mol Gen Genet. 1996 Feb 25;250(3):367–374. doi: 10.1007/BF02174395. [DOI] [PubMed] [Google Scholar]
  24. Maftahi M., Gaillardin C., Nicaud J. M. Sticky-end polymerase chain reaction method for systematic gene disruption in Saccharomyces cerevisiae. Yeast. 1996 Jul;12(9):859–868. doi: 10.1002/(SICI)1097-0061(199607)12:9%3C859::AID-YEA978%3E3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  25. Maftahi M., Nicaud J. M., Levesque H., Gaillardin C. Sequencing analysis of a 15.4 kb fragment of yeast chromosome XIV identifies the RPD3, PAS8 and KRE1 loci, five new open reading frames. Yeast. 1995 May;11(6):567–572. doi: 10.1002/yea.320110606. [DOI] [PubMed] [Google Scholar]
  26. Matoba S., Fukayama J., Wing R. A., Ogrydziak D. M. Intracellular precursors and secretion of alkaline extracellular protease of Yarrowia lipolytica. Mol Cell Biol. 1988 Nov;8(11):4904–4916. doi: 10.1128/mcb.8.11.4904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Matoba S., Ogrydziak D. M. A novel location for dipeptidyl aminopeptidase processing sites in the alkaline extracellular protease of Yarrowia lipolytica. J Biol Chem. 1989 Apr 15;264(11):6037–6043. [PubMed] [Google Scholar]
  28. Monod M., Togni G., Hube B., Sanglard D. Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol. 1994 Jul;13(2):357–368. doi: 10.1111/j.1365-2958.1994.tb00429.x. [DOI] [PubMed] [Google Scholar]
  29. Negrete-Urtasun S., Denison S. H., Arst H. N., Jr Characterization of the pH signal transduction pathway gene palA of Aspergillus nidulans and identification of possible homologs. J Bacteriol. 1997 Mar;179(5):1832–1835. doi: 10.1128/jb.179.5.1832-1835.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ogrydziak D. M., Demain A. L., Tannenbaum S. R. Regulation of extracellular protease production in Candida lipolytica. Biochim Biophys Acta. 1977 Apr 27;497(2):525–538. doi: 10.1016/0304-4165(77)90209-4. [DOI] [PubMed] [Google Scholar]
  31. Ogrydziak D. M., Mortimer R. K. Genetics of Extracellular Protease Production in SACCHAROMYCOPSIS LIPOLYTICA. Genetics. 1977 Dec;87(4):621–632. doi: 10.1093/genetics/87.4.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ogrydziak D. M. Yeast extracellular proteases. Crit Rev Biotechnol. 1993;13(1):1–55. doi: 10.3109/07388559309069197. [DOI] [PubMed] [Google Scholar]
  33. Orejas M., Espeso E. A., Tilburn J., Sarkar S., Arst H. N., Jr, Peñalva M. A. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes Dev. 1995 Jul 1;9(13):1622–1632. doi: 10.1101/gad.9.13.1622. [DOI] [PubMed] [Google Scholar]
  34. Otero R. C., Gaillardin C. Dominant mutations affecting expression of pH-regulated genes in Yarrowia lipolytica. Mol Gen Genet. 1996 Sep 13;252(3):311–319. doi: 10.1007/BF02173777. [DOI] [PubMed] [Google Scholar]
  35. Pavletich N. P., Pabo C. O. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science. 1993 Sep 24;261(5129):1701–1707. doi: 10.1126/science.8378770. [DOI] [PubMed] [Google Scholar]
  36. Pavletich N. P., Pabo C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. doi: 10.1126/science.2028256. [DOI] [PubMed] [Google Scholar]
  37. Ross I. K., De Bernardis F., Emerson G. W., Cassone A., Sullivan P. A. The secreted aspartate proteinase of Candida albicans: physiology of secretion and virulence of a proteinase-deficient mutant. J Gen Microbiol. 1990 Apr;136(4):687–694. doi: 10.1099/00221287-136-4-687. [DOI] [PubMed] [Google Scholar]
  38. Schuh R., Aicher W., Gaul U., Côté S., Preiss A., Maier D., Seifert E., Nauber U., Schröder C., Kemler R. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene. Cell. 1986 Dec 26;47(6):1025–1032. doi: 10.1016/0092-8674(86)90817-2. [DOI] [PubMed] [Google Scholar]
  39. Simms P. C., Ogrydziak D. M. Structural gene for the alkaline extracellular protease of Saccharomycopsis lipolytica. J Bacteriol. 1981 Jan;145(1):404–409. doi: 10.1128/jb.145.1.404-409.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Su S. S., Mitchell A. P. Molecular characterization of the yeast meiotic regulatory gene RIM1. Nucleic Acids Res. 1993 Aug 11;21(16):3789–3797. doi: 10.1093/nar/21.16.3789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Suzuki M. SPXX, a frequent sequence motif in gene regulatory proteins. J Mol Biol. 1989 May 5;207(1):61–84. doi: 10.1016/0022-2836(89)90441-5. [DOI] [PubMed] [Google Scholar]
  42. Suárez T., Peñalva M. A. Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol. 1996 May;20(3):529–540. doi: 10.1046/j.1365-2958.1996.5421065.x. [DOI] [PubMed] [Google Scholar]
  43. Tilburn J., Sarkar S., Widdick D. A., Espeso E. A., Orejas M., Mungroo J., Peñalva M. A., Arst H. N., Jr The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 1995 Feb 15;14(4):779–790. doi: 10.1002/j.1460-2075.1995.tb07056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. White T. C., Agabian N. Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol. 1995 Sep;177(18):5215–5221. doi: 10.1128/jb.177.18.5215-5221.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yamada T., Ogrydziak D. M. Extracellular acid proteases produced by Saccharomycopsis lipolytica. J Bacteriol. 1983 Apr;154(1):23–31. doi: 10.1128/jb.154.1.23-31.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yaver D. S., Matoba S., Ogrydziak D. M. A mutation in the signal recognition particle 7S RNA of the yeast Yarrowia lipolytica preferentially affects synthesis of the alkaline extracellular protease: in vivo evidence for translational arrest. J Cell Biol. 1992 Feb;116(3):605–616. doi: 10.1083/jcb.116.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Young T. W., Wadeson A., Glover D. J., Quincey R. V., Butlin M. J., Kamei E. A. The extracellular acid protease gene of Yarrowia lipolytica: sequence and pH-regulated transcription. Microbiology. 1996 Oct;142(Pt 10):2913–2921. doi: 10.1099/13500872-142-10-2913. [DOI] [PubMed] [Google Scholar]
  48. Zarkower D., Hodgkin J. Molecular analysis of the C. elegans sex-determining gene tra-1: a gene encoding two zinc finger proteins. Cell. 1992 Jul 24;70(2):237–249. doi: 10.1016/0092-8674(92)90099-x. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES