Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Sep;17(9):5288–5298. doi: 10.1128/mcb.17.9.5288

Genetic analysis of the large subunit of yeast transcription factor IIE reveals two regions with distinct functions.

N H Kuldell 1, S Buratowski 1
PMCID: PMC232379  PMID: 9271406

Abstract

Biochemical analysis of proteins necessary for transcription initiation by eukaryotic RNA polymerase II (pol II) has identified transcription factor IIE (TFIIE) as an essential component of the reaction. To better understand the role of TFIIE in transcription, we isolated conditional alleles of TFA1, the gene encoding the large subunit of TFIIE in the yeast Saccharomyces cerevisiae. The mutant Tfa1 proteins fall into two classes. The first class causes thermosensitive growth due to single amino acid substitutions of the cysteines comprising the Zn-binding motif. The second mutant class is made up of proteins that are C-terminally truncated and that cause a cold-sensitive growth phenotype. The behavior of these mutants suggests that Tfa1p possesses at least two domains with genetically distinct functions. The mutations in the Zn-binding motif do not affect the mutant protein's stability at the nonpermissive temperature or its ability to associate with the small subunit of TFIIE. Our studies further determined that wild-type TFIIE can bind to single-stranded DNA in vitro. However, this property is unaffected in the mutant TFIIE complexes. Finally, we have demonstrated the biological importance of TFIIE in pol II-mediated transcription by depleting the Tfa1 protein from the cells and observing a concomitant decrease in total poly(A)+ mRNA.

Full Text

The Full Text of this article is available as a PDF (713.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal K., Baek K. H., Jeon C. J., Miyamoto K., Ueno A., Yoon H. S. Stimulation of transcript elongation requires both the zinc finger and RNA polymerase II binding domains of human TFIIS. Biochemistry. 1991 Aug 6;30(31):7842–7851. doi: 10.1021/bi00245a026. [DOI] [PubMed] [Google Scholar]
  2. Buratowski S., Hahn S., Guarente L., Sharp P. A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell. 1989 Feb 24;56(4):549–561. doi: 10.1016/0092-8674(89)90578-3. [DOI] [PubMed] [Google Scholar]
  3. Buratowski S. The basics of basal transcription by RNA polymerase II. Cell. 1994 Apr 8;77(1):1–3. doi: 10.1016/0092-8674(94)90226-7. [DOI] [PubMed] [Google Scholar]
  4. Bushnell D. A., Bamdad C., Kornberg R. D. A minimal set of RNA polymerase II transcription protein interactions. J Biol Chem. 1996 Aug 16;271(33):20170–20174. doi: 10.1074/jbc.271.33.20170. [DOI] [PubMed] [Google Scholar]
  5. Conaway R. C., Conaway J. W. General initiation factors for RNA polymerase II. Annu Rev Biochem. 1993;62:161–190. doi: 10.1146/annurev.bi.62.070193.001113. [DOI] [PubMed] [Google Scholar]
  6. Dougherty D. A. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science. 1996 Jan 12;271(5246):163–168. doi: 10.1126/science.271.5246.163. [DOI] [PubMed] [Google Scholar]
  7. Drapkin R., Reinberg D. The multifunctional TFIIH complex and transcriptional control. Trends Biochem Sci. 1994 Nov;19(11):504–508. doi: 10.1016/0968-0004(94)90139-2. [DOI] [PubMed] [Google Scholar]
  8. Feaver W. J., Henry N. L., Bushnell D. A., Sayre M. H., Brickner J. H., Gileadi O., Kornberg R. D. Yeast TFIIE. Cloning, expression, and homology to vertebrate proteins. J Biol Chem. 1994 Nov 4;269(44):27549–27553. [PubMed] [Google Scholar]
  9. Flores O., Lu H., Reinberg D. Factors involved in specific transcription by mammalian RNA polymerase II. Identification and characterization of factor IIH. J Biol Chem. 1992 Feb 5;267(4):2786–2793. [PubMed] [Google Scholar]
  10. Goodrich J. A., Tjian R. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell. 1994 Apr 8;77(1):145–156. doi: 10.1016/0092-8674(94)90242-9. [DOI] [PubMed] [Google Scholar]
  11. Gross C. A., Grossman A. D., Liebke H., Walter W., Burgess R. R. Effects of the mutant sigma allele rpoD800 on the synthesis of specific macromolecular components of the Escherichia coli K12 cell. J Mol Biol. 1984 Jan 25;172(3):283–300. doi: 10.1016/s0022-2836(84)80027-3. [DOI] [PubMed] [Google Scholar]
  12. Gulyas K. D., Donahue T. F. SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3. Cell. 1992 Jun 12;69(6):1031–1042. doi: 10.1016/0092-8674(92)90621-i. [DOI] [PubMed] [Google Scholar]
  13. Holstege F. C., Tantin D., Carey M., van der Vliet P. C., Timmers H. T. The requirement for the basal transcription factor IIE is determined by the helical stability of promoter DNA. EMBO J. 1995 Feb 15;14(4):810–819. doi: 10.1002/j.1460-2075.1995.tb07059.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holstege F. C., van der Vliet P. C., Timmers H. T. Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J. 1996 Apr 1;15(7):1666–1677. [PMC free article] [PubMed] [Google Scholar]
  15. Hope I. A., Struhl K. GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J. 1987 Sep;6(9):2781–2784. doi: 10.1002/j.1460-2075.1987.tb02573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Inostroza J., Flores O., Reinberg D. Factors involved in specific transcription by mammalian RNA polymerase II. Purification and functional analysis of general transcription factor IIE. J Biol Chem. 1991 May 15;266(14):9304–9308. [PubMed] [Google Scholar]
  17. Karlin S. Unusual charge configurations in transcription factors of the basic RNA polymerase II initiation complex. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5593–5597. doi: 10.1073/pnas.90.12.5593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koleske A. J., Young R. A. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem Sci. 1995 Mar;20(3):113–116. doi: 10.1016/s0968-0004(00)88977-x. [DOI] [PubMed] [Google Scholar]
  19. Kunkel T. A., Bebenek K., McClary J. Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol. 1991;204:125–139. doi: 10.1016/0076-6879(91)04008-c. [DOI] [PubMed] [Google Scholar]
  20. Leuther K. K., Bushnell D. A., Kornberg R. D. Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: implications for start site selection and initiation complex formation. Cell. 1996 May 31;85(5):773–779. doi: 10.1016/s0092-8674(00)81242-8. [DOI] [PubMed] [Google Scholar]
  21. Matsui P., DePaulo J., Buratowski S. An interaction between the Tfb1 and Ssl1 subunits of yeast TFIIH correlates with DNA repair activity. Nucleic Acids Res. 1995 Mar 11;23(5):767–772. doi: 10.1093/nar/23.5.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maxon M. E., Tjian R. Transcriptional activity of transcription factor IIE is dependent on zinc binding. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9529–9533. doi: 10.1073/pnas.91.20.9529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moqtaderi Z., Bai Y., Poon D., Weil P. A., Struhl K. TBP-associated factors are not generally required for transcriptional activation in yeast. Nature. 1996 Sep 12;383(6596):188–191. doi: 10.1038/383188a0. [DOI] [PubMed] [Google Scholar]
  24. Muhlrad D., Hunter R., Parker R. A rapid method for localized mutagenesis of yeast genes. Yeast. 1992 Feb;8(2):79–82. doi: 10.1002/yea.320080202. [DOI] [PubMed] [Google Scholar]
  25. Navaratnam S., Myles G. M., Strange R. W., Sancar A. Evidence from extended X-ray absorption fine structure and site-specific mutagenesis for zinc fingers in UvrA protein of Escherichia coli. J Biol Chem. 1989 Sep 25;264(27):16067–16071. [PubMed] [Google Scholar]
  26. Nikolov D. B., Burley S. K. RNA polymerase II transcription initiation: a structural view. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):15–22. doi: 10.1073/pnas.94.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Noble S. M., Guthrie C. Identification of novel genes required for yeast pre-mRNA splicing by means of cold-sensitive mutations. Genetics. 1996 May;143(1):67–80. doi: 10.1093/genetics/143.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ohkuma Y., Hashimoto S., Roeder R. G., Horikoshi M. Identification of two large subdomains in TFIIE-alpha on the basis of homology between Xenopus and human sequences. Nucleic Acids Res. 1992 Nov 11;20(21):5838–5838. doi: 10.1093/nar/20.21.5838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ohkuma Y., Hashimoto S., Wang C. K., Horikoshi M., Roeder R. G. Analysis of the role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-alpha. Mol Cell Biol. 1995 Sep;15(9):4856–4866. doi: 10.1128/mcb.15.9.4856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ohkuma Y., Sumimoto H., Horikoshi M., Roeder R. G. Factors involved in specific transcription by mammalian RNA polymerase II: purification and characterization of general transcription factor TFIIE. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9163–9167. doi: 10.1073/pnas.87.23.9163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pan G., Greenblatt J. Initiation of transcription by RNA polymerase II is limited by melting of the promoter DNA in the region immediately upstream of the initiation site. J Biol Chem. 1994 Dec 2;269(48):30101–30104. [PubMed] [Google Scholar]
  32. Parvin J. D., Sharp P. A. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell. 1993 May 7;73(3):533–540. doi: 10.1016/0092-8674(93)90140-l. [DOI] [PubMed] [Google Scholar]
  33. Parvin J. D., Shykind B. M., Meyers R. E., Kim J., Sharp P. A. Multiple sets of basal factors initiate transcription by RNA polymerase II. J Biol Chem. 1994 Jul 15;269(28):18414–18421. [PubMed] [Google Scholar]
  34. Peterson M. G., Inostroza J., Maxon M. E., Flores O., Admon A., Reinberg D., Tjian R. Structure and functional properties of human general transcription factor IIE. Nature. 1991 Dec 5;354(6352):369–373. doi: 10.1038/354369a0. [DOI] [PubMed] [Google Scholar]
  35. Qian X., Gozani S. N., Yoon H., Jeon C. J., Agarwal K., Weiss M. A. Novel zinc finger motif in the basal transcriptional machinery: three-dimensional NMR studies of the nucleic acid binding domain of transcriptional elongation factor TFIIS. Biochemistry. 1993 Sep 28;32(38):9944–9959. doi: 10.1021/bi00089a010. [DOI] [PubMed] [Google Scholar]
  36. Qian X., Jeon C., Yoon H., Agarwal K., Weiss M. A. Structure of a new nucleic-acid-binding motif in eukaryotic transcriptional elongation factor TFIIS. Nature. 1993 Sep 16;365(6443):277–279. doi: 10.1038/365277a0. [DOI] [PubMed] [Google Scholar]
  37. Robert F., Forget D., Li J., Greenblatt J., Coulombe B. Localization of subunits of transcription factors IIE and IIF immediately upstream of the transcriptional initiation site of the adenovirus major late promoter. J Biol Chem. 1996 Apr 12;271(15):8517–8520. doi: 10.1074/jbc.271.15.8517. [DOI] [PubMed] [Google Scholar]
  38. Sakurai H., Ohishi T., Fukasawa T. Promoter structure-dependent functioning of the general transcription factor IIE in Saccharomyces cerevisiae. J Biol Chem. 1997 Jun 20;272(25):15936–15942. doi: 10.1074/jbc.272.25.15936. [DOI] [PubMed] [Google Scholar]
  39. Sayre M. H., Tschochner H., Kornberg R. D. Purification and properties of Saccharomyces cerevisiae RNA polymerase II general initiation factor a. J Biol Chem. 1992 Nov 15;267(32):23383–23387. [PubMed] [Google Scholar]
  40. Sayre M. H., Tschochner H., Kornberg R. D. Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. J Biol Chem. 1992 Nov 15;267(32):23376–23382. [PubMed] [Google Scholar]
  41. Tantin D., Carey M. A heteroduplex template circumvents the energetic requirement for ATP during activated transcription by RNA polymerase II. J Biol Chem. 1994 Jul 1;269(26):17397–17400. [PubMed] [Google Scholar]
  42. Thompson C. M., Young R. A. General requirement for RNA polymerase II holoenzymes in vivo. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4587–4590. doi: 10.1073/pnas.92.10.4587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tyree C. M., George C. P., Lira-DeVito L. M., Wampler S. L., Dahmus M. E., Zawel L., Kadonaga J. T. Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev. 1993 Jul;7(7A):1254–1265. doi: 10.1101/gad.7.7a.1254. [DOI] [PubMed] [Google Scholar]
  44. Vidal M., Gaber R. F. Selectable marker replacement in Saccharomyces cerevisiae. Yeast. 1994 Feb;10(2):141–149. doi: 10.1002/yea.320100202. [DOI] [PubMed] [Google Scholar]
  45. Wang X., Hansen S. K., Ratts R., Zhou S., Snook A. J., Zehring W. Drosophila TFIIE: purification, cloning, and functional reconstitution. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):433–438. doi: 10.1073/pnas.94.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zawel L., Reinberg D. Common themes in assembly and function of eukaryotic transcription complexes. Annu Rev Biochem. 1995;64:533–561. doi: 10.1146/annurev.bi.64.070195.002533. [DOI] [PubMed] [Google Scholar]
  47. Zhou Y. H., Zhang X. P., Ebright R. H. Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymerase. Nucleic Acids Res. 1991 Nov 11;19(21):6052–6052. doi: 10.1093/nar/19.21.6052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhu W., Zeng Q., Colangelo C. M., Lewis M., Summers M. F., Scott R. A. The N-terminal domain of TFIIB from Pyrococcus furiosus forms a zinc ribbon. Nat Struct Biol. 1996 Feb;3(2):122–124. doi: 10.1038/nsb0296-122. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES