Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Sep;17(9):5612–5619. doi: 10.1128/mcb.17.9.5612

Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene.

G S Watts 1, R O Pieper 1, J F Costello 1, Y M Peng 1, W S Dalton 1, B W Futscher 1
PMCID: PMC232409  PMID: 9271436

Abstract

O6-Methylguanine DNA methyltransferase (MGMT) repairs the mutagenic and cytotoxic O6-alkylguanine lesions produced by environmental carcinogens and the chemotherapeutic nitrosoureas. As such, MGMT-mediated repair of O6-alkylguanine lesions constitutes a major form of resistance to nitrosourea chemotherapy and makes control of MGMT expression of clinical interest. The variability of expression in cell lines and tissues, along with the ease with which the MGMT phenotype reverts under various conditions, suggests that MGMT is under epigenetic control. One such epigenetic mechanism, 5-methylation of cytosines, has been linked to MGMT expression. We have used an isogenic human multiple myeloma tumor cell line model composed of an MGMT-positive parent cell line, RPMI 8226/S, and its MGMT-negative variant, termed 8226/V, to study the control of MGMT expression. The loss of MGMT activity in 8226/V was found to be due to the loss of detectable MGMT gene expression. Bisulfite sequencing of the MGMT CpG island promoter revealed large increases in the levels of CpG methylation within discrete regions of the 8226/V MGMT CpG island compared to those in 8226/S. These changes in CpG methylation are associated with local heterochromatinization of the 8226/V MGMT transcription start site and provide a likely mechanism for the loss of MGMT transcription in 8226/V.

Full Text

The Full Text of this article is available as a PDF (665.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyes J., Bird A. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J. 1992 Jan;11(1):327–333. doi: 10.1002/j.1460-2075.1992.tb05055.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cairns-Smith S., Karran P. Epigenetic silencing of the DNA repair enzyme O6-methylguanine-DNA methyltransferase in Mex- human cells. Cancer Res. 1992 Oct 1;52(19):5257–5263. [PubMed] [Google Scholar]
  3. Citron M., Decker R., Chen S., Schneider S., Graver M., Kleynerman L., Kahn L. B., White A., Schoenhaus M., Yarosh D. O6-methylguanine-DNA methyltransferase in human normal and tumor tissue from brain, lung, and ovary. Cancer Res. 1991 Aug 15;51(16):4131–4134. [PubMed] [Google Scholar]
  4. Clark S. J., Harrison J., Paul C. L., Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994 Aug 11;22(15):2990–2997. doi: 10.1093/nar/22.15.2990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Comb M., Goodman H. M. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 1990 Jul 11;18(13):3975–3982. doi: 10.1093/nar/18.13.3975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Costello J. F., Futscher B. W., Kroes R. A., Pieper R. O. Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines. Mol Cell Biol. 1994 Oct;14(10):6515–6521. doi: 10.1128/mcb.14.10.6515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Costello J. F., Futscher B. W., Tano K., Graunke D. M., Pieper R. O. Graded methylation in the promoter and body of the O6-methylguanine DNA methyltransferase (MGMT) gene correlates with MGMT expression in human glioma cells. J Biol Chem. 1994 Jun 24;269(25):17228–17237. [PubMed] [Google Scholar]
  8. Day R. S., 3rd, Ziolkowski C. H., Scudiero D. A., Meyer S. A., Lubiniecki A. S., Girardi A. J., Galloway S. M., Bynum G. D. Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains. Nature. 1980 Dec 25;288(5792):724–727. doi: 10.1038/288724a0. [DOI] [PubMed] [Google Scholar]
  9. Dolan M. E., Moschel R. C., Pegg A. E. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5368–5372. doi: 10.1073/pnas.87.14.5368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Erickson L. C., Laurent G., Sharkey N. A., Kohn K. W. DNA cross-linking and monoadduct repair in nitrosourea-treated human tumour cells. Nature. 1980 Dec 25;288(5792):727–729. doi: 10.1038/288727a0. [DOI] [PubMed] [Google Scholar]
  11. Futscher B. W., Campbell K., Dalton W. S. Collateral sensitivity to nitrosoureas in multidrug-resistant cells selected with verapamil. Cancer Res. 1992 Sep 15;52(18):5013–5017. [PubMed] [Google Scholar]
  12. Futscher B. W., Micetich K. C., Barnes D. M., Fisher R. I., Erickson L. C. Inhibition of a specific DNA repair system and nitrosourea cytotoxicity in resistant human cancer cells. Cancer Commun. 1989;1(1):65–73. doi: 10.3727/095535489820875444. [DOI] [PubMed] [Google Scholar]
  13. Gardiner-Garden M., Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987 Jul 20;196(2):261–282. doi: 10.1016/0022-2836(87)90689-9. [DOI] [PubMed] [Google Scholar]
  14. Grunstein M. Nucleosomes: regulators of transcription. Trends Genet. 1990 Dec;6(12):395–400. doi: 10.1016/0168-9525(90)90299-l. [DOI] [PubMed] [Google Scholar]
  15. Harris L. C., Potter P. M., Tano K., Shiota S., Mitra S., Brent T. P. Characterization of the promoter region of the human O6-methylguanine-DNA methyltransferase gene. Nucleic Acids Res. 1991 Nov 25;19(22):6163–6167. doi: 10.1093/nar/19.22.6163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harris L. C., Remack J. S., Brent T. P. Identification of a 59 bp enhancer located at the first exon/intron boundary of the human O6-methylguanine DNA methyltransferase gene. Nucleic Acids Res. 1994 Nov 11;22(22):4614–4619. doi: 10.1093/nar/22.22.4614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harris L. C., Remack J. S., Brent T. P. In vitro methylation of the human O6-methylguanine-DNA methyltransferase promoter reduces transcription. Biochim Biophys Acta. 1994 Mar 1;1217(2):141–146. doi: 10.1016/0167-4781(94)90027-2. [DOI] [PubMed] [Google Scholar]
  18. Iguchi-Ariga S. M., Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 1989 May;3(5):612–619. doi: 10.1101/gad.3.5.612. [DOI] [PubMed] [Google Scholar]
  19. Jost J. P., Hofsteenge J. The repressor MDBP-2 is a member of the histone H1 family that binds preferentially in vitro and in vivo to methylated nonspecific DNA sequences. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9499–9503. doi: 10.1073/pnas.89.20.9499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kamakaka R. T., Thomas J. O. Chromatin structure of transcriptionally competent and repressed genes. EMBO J. 1990 Dec;9(12):3997–4006. doi: 10.1002/j.1460-2075.1990.tb07621.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee S. M., Reid H., Elder R. H., Thatcher N., Margison G. P. Inter- and intracellular heterogeneity of O6-alkylguanine-DNA alkyltransferase expression in human brain tumors: possible significance in nitrosourea therapy. Carcinogenesis. 1996 Apr;17(4):637–641. doi: 10.1093/carcin/17.4.637. [DOI] [PubMed] [Google Scholar]
  22. Levine A., Yeivin A., Ben-Asher E., Aloni Y., Razin A. Histone H1-mediated inhibition of transcription initiation of methylated templates in vitro. J Biol Chem. 1993 Oct 15;268(29):21754–21759. [PubMed] [Google Scholar]
  23. Ostrowski L. E., von Wronski M. A., Bigner S. H., Rasheed A., Schold S. C., Jr, Brent T. P., Mitra S., Bigner D. D. Expression of O6-methylguanine-DNA methyltransferase in malignant human glioma cell lines. Carcinogenesis. 1991 Sep;12(9):1739–1744. doi: 10.1093/carcin/12.9.1739. [DOI] [PubMed] [Google Scholar]
  24. Pegg A. E., Dolan M. E., Moschel R. C. Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase. Prog Nucleic Acid Res Mol Biol. 1995;51:167–223. doi: 10.1016/s0079-6603(08)60879-x. [DOI] [PubMed] [Google Scholar]
  25. Pegg A. E. Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res. 1990 Oct 1;50(19):6119–6129. [PubMed] [Google Scholar]
  26. Pieper R. O., Futscher B. W., Dong Q., Ellis T. M., Erickson L. C. Comparison of O-6-methylguanine DNA methyltransferase (MGMT) mRNA levels in Mer+ and Mer- human tumor cell lines containing the MGMT gene by the polymerase chain reaction technique. Cancer Commun. 1990;2(1):13–20. doi: 10.3727/095535490820874812. [DOI] [PubMed] [Google Scholar]
  27. Pieper R. O., Patel S., Ting S. A., Futscher B. W., Costello J. F. Methylation of CpG island transcription factor binding sites is unnecessary for aberrant silencing of the human MGMT gene. J Biol Chem. 1996 Jun 7;271(23):13916–13924. doi: 10.1074/jbc.271.23.13916. [DOI] [PubMed] [Google Scholar]
  28. Silber J. R., Blank A., Bobola M. S., Mueller B. A., Kolstoe D. D., Ojemann G. A., Berger M. S. Lack of the DNA repair protein O6-methylguanine-DNA methyltransferase in histologically normal brain adjacent to primary human brain tumors. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6941–6946. doi: 10.1073/pnas.93.14.6941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Skorpen F., Krokan H. E. The methylation status of the gene for O6-methylguanine-DNA methyltransferase in human Mer+ and Mer- cells. Carcinogenesis. 1995 Aug;16(8):1857–1863. doi: 10.1093/carcin/16.8.1857. [DOI] [PubMed] [Google Scholar]
  30. Smith D. G., Brent T. P. Response of cultured human cell lines from rhabdomyosarcoma xenografts to treatment with chloroethylnitrosoureas. Cancer Res. 1989 Feb 15;49(4):883–886. [PubMed] [Google Scholar]
  31. Tano K., Shiota S., Collier J., Foote R. S., Mitra S. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Natl Acad Sci U S A. 1990 Jan;87(2):686–690. doi: 10.1073/pnas.87.2.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Watt F., Molloy P. L. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 1988 Sep;2(9):1136–1143. doi: 10.1101/gad.2.9.1136. [DOI] [PubMed] [Google Scholar]
  33. Wolffe A. P. Transcription: in tune with the histones. Cell. 1994 Apr 8;77(1):13–16. doi: 10.1016/0092-8674(94)90229-1. [DOI] [PubMed] [Google Scholar]
  34. Wu R. S., Hurst-Calderone S., Kohn K. W. Measurement of O6-alkylguanine-DNA alkyltransferase activity in human cells and tumor tissues by restriction endonuclease inhibition. Cancer Res. 1987 Dec 1;47(23):6229–6235. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES