Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Oct;17(10):5935–5945. doi: 10.1128/mcb.17.10.5935

Involvement of AP-2 in regulation of the R-FABP gene in the developing chick retina.

D A Bisgrove 1, E A Monckton 1, R Godbout 1
PMCID: PMC232441  PMID: 9315651

Abstract

Little is known regarding the molecular pathways that underlie the retinal maturation process. We are studying the regulation of the retinal fatty-acid-binding protein (R-FABP) gene, highly expressed in retinal precursor cells, to identify DNA regulatory elements and transcriptional factors involved in retinal development. Although the upstream sequence of the R-FABP gene is extremely GC rich, CpG methylation in this region is not implicated in the regulation of this gene because the 5' flanking DNA remains unmethylated with tissue differentiation when there is a dramatic decrease in R-FABP transcript levels. Using a combination of DNase I hypersensitivity experiments, gel shift assays, and DNase I footprinting, we have found three sites of DNA-protein interaction within 205 bp of 5' flanking DNA in the undifferentiated retina and four sites in the differentiated retina. DNA transfection analysis indicates that the first two footprints located within 150 bp of 5' flanking DNA are required for high levels of transcription in primary undifferentiated retinal cultures. The first footprint includes a putative TATA box and Spl binding sites while the second footprint contains a consensus AP-2 DNA binding site. Supershift experiments using antibodies to AP-2 and methylation interference experiments indicate that an AP-2-like transcription factor present in both late-proliferative-stage retina and differentiated retina binds to the upstream region of the R-FABP gene. A combination of data including the expression profile of AP-2 during retinal development and DNA transfection analysis using constructs mutated at critical residues within the AP-2 binding site suggests that AP-2 is a repressor of R-FABP transcription.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bass N. M. Cellular binding proteins for fatty acids and retinoids: similar or specialized functions? Mol Cell Biochem. 1993 Jun 9;123(1-2):191–202. doi: 10.1007/BF01076492. [DOI] [PubMed] [Google Scholar]
  2. Bass N. M., Raghupathy E., Rhoads D. E., Manning J. A., Ockner R. K. Partial purification of molecular weight 12 000 fatty acid binding proteins from rat brain and their effect on synaptosomal Na+-dependent amino acid uptake. Biochemistry. 1984 Dec 18;23(26):6539–6544. doi: 10.1021/bi00321a040. [DOI] [PubMed] [Google Scholar]
  3. Belikov S., Wieslander L. Express protocol for generating G+A sequencing ladders. Nucleic Acids Res. 1995 Jan 25;23(2):310–310. doi: 10.1093/nar/23.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernier I., Jollès P. Purification and characterization of a basic 23 kDa cytosolic protein from bovine brain. Biochim Biophys Acta. 1984 Oct 23;790(2):174–181. doi: 10.1016/0167-4838(84)90221-8. [DOI] [PubMed] [Google Scholar]
  5. Bird A. P., Taggart M. H., Nicholls R. D., Higgs D. R. Non-methylated CpG-rich islands at the human alpha-globin locus: implications for evolution of the alpha-globin pseudogene. EMBO J. 1987 Apr;6(4):999–1004. doi: 10.1002/j.1460-2075.1987.tb04851.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bordewick U., Heese M., Börchers T., Robenek H., Spener F. Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis. Biol Chem Hoppe Seyler. 1989 Mar;370(3):229–238. doi: 10.1515/bchm3.1989.370.1.229. [DOI] [PubMed] [Google Scholar]
  7. Buelt M. K., Shekels L. L., Jarvis B. W., Bernlohr D. A. In vitro phosphorylation of the adipocyte lipid-binding protein (p15) by the insulin receptor. Effects of fatty acid on receptor kinase and substrate phosphorylation. J Biol Chem. 1991 Jul 5;266(19):12266–12271. [PubMed] [Google Scholar]
  8. Buettner R., Kannan P., Imhof A., Bauer R., Yim S. O., Glockshuber R., Van Dyke M. W., Tainsky M. A. An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2. Mol Cell Biol. 1993 Jul;13(7):4174–4185. doi: 10.1128/mcb.13.7.4174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burren C. P., Berka J. L., Edmondson S. R., Werther G. A., Batch J. A. Localization of mRNAs for insulin-like growth factor-I (IGF-I), IGF-I receptor, and IGF binding proteins in rat eye. Invest Ophthalmol Vis Sci. 1996 Jun;37(7):1459–1468. [PubMed] [Google Scholar]
  10. Börchers T., Unterberg C., Rüdel H., Robenek H., Spener F. Subcellular distribution of cardiac fatty acid-binding protein in bovine heart muscle and quantitation with an enzyme-linked immunosorbent assay. Biochim Biophys Acta. 1989 Mar 14;1002(1):54–61. doi: 10.1016/0005-2760(89)90063-5. [DOI] [PubMed] [Google Scholar]
  11. Chen A., Beno D. W., Davis B. H. Suppression of stellate cell type I collagen gene expression involves AP-2 transmodulation of nuclear factor-1-dependent gene transcription. J Biol Chem. 1996 Oct 18;271(42):25994–25998. doi: 10.1074/jbc.271.42.25994. [DOI] [PubMed] [Google Scholar]
  12. Chen T. T., Wu R. L., Castro-Munozledo F., Sun T. T. Regulation of K3 keratin gene transcription by Sp1 and AP-2 in differentiating rabbit corneal epithelial cells. Mol Cell Biol. 1997 Jun;17(6):3056–3064. doi: 10.1128/mcb.17.6.3056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clark S. J., Harrison J., Paul C. L., Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994 Aug 11;22(15):2990–2997. doi: 10.1093/nar/22.15.2990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Comb M., Goodman H. M. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 1990 Jul 11;18(13):3975–3982. doi: 10.1093/nar/18.13.3975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Duan C., Clemmons D. R. Transcription factor AP-2 regulates human insulin-like growth factor binding protein-5 gene expression. J Biol Chem. 1995 Oct 20;270(42):24844–24851. doi: 10.1074/jbc.270.42.24844. [DOI] [PubMed] [Google Scholar]
  16. Dütting D., Gierer A., Hansmann G. Self-renewal of stem cells and differentiation of nerve cells in the developing chick retina. Brain Res. 1983 Oct;312(1):21–32. doi: 10.1016/0165-3806(83)90117-7. [DOI] [PubMed] [Google Scholar]
  17. Eden S., Cedar H. Role of DNA methylation in the regulation of transcription. Curr Opin Genet Dev. 1994 Apr;4(2):255–259. doi: 10.1016/s0959-437x(05)80052-8. [DOI] [PubMed] [Google Scholar]
  18. Feng L., Hatten M. E., Heintz N. Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron. 1994 Apr;12(4):895–908. doi: 10.1016/0896-6273(94)90341-7. [DOI] [PubMed] [Google Scholar]
  19. Feng L., Heintz N. Differentiating neurons activate transcription of the brain lipid-binding protein gene in radial glia through a novel regulatory element. Development. 1995 Jun;121(6):1719–1730. doi: 10.1242/dev.121.6.1719. [DOI] [PubMed] [Google Scholar]
  20. Frommer M., McDonald L. E., Millar D. S., Collis C. M., Watt F., Grigg G. W., Molloy P. L., Paul C. L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1827–1831. doi: 10.1073/pnas.89.5.1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gaubatz S., Imhof A., Dosch R., Werner O., Mitchell P., Buettner R., Eilers M. Transcriptional activation by Myc is under negative control by the transcription factor AP-2. EMBO J. 1995 Apr 3;14(7):1508–1519. doi: 10.1002/j.1460-2075.1995.tb07137.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Getman D. K., Mutero A., Inoue K., Taylor P. Transcription factor repression and activation of the human acetylcholinesterase gene. J Biol Chem. 1995 Oct 6;270(40):23511–23519. doi: 10.1074/jbc.270.40.23511. [DOI] [PubMed] [Google Scholar]
  23. Godbout R. Identification and characterization of transcripts present at elevated levels in the undifferentiated chick retina. Exp Eye Res. 1993 Jan;56(1):95–106. doi: 10.1006/exer.1993.1014. [DOI] [PubMed] [Google Scholar]
  24. Godbout R., Ingram R., Tilghman S. M. Multiple regulatory elements in the intergenic region between the alpha-fetoprotein and albumin genes. Mol Cell Biol. 1986 Feb;6(2):477–487. doi: 10.1128/mcb.6.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Godbout R., Marusyk H., Bisgrove D., Dabbagh L., Poppema S. Localization of a fatty acid binding protein and its transcript in the developing chick retina. Exp Eye Res. 1995 Jun;60(6):645–657. doi: 10.1016/s0014-4835(05)80006-5. [DOI] [PubMed] [Google Scholar]
  26. Godbout R., Tilghman S. M. Configuration of the alpha-fetoprotein regulatory domain during development. Genes Dev. 1988 Aug;2(8):949–956. doi: 10.1101/gad.2.8.949. [DOI] [PubMed] [Google Scholar]
  27. Gorski K., Carneiro M., Schibler U. Tissue-specific in vitro transcription from the mouse albumin promoter. Cell. 1986 Dec 5;47(5):767–776. doi: 10.1016/0092-8674(86)90519-2. [DOI] [PubMed] [Google Scholar]
  28. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  29. Gross D. S., Garrard W. T. Nuclease hypersensitive sites in chromatin. Annu Rev Biochem. 1988;57:159–197. doi: 10.1146/annurev.bi.57.070188.001111. [DOI] [PubMed] [Google Scholar]
  30. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  31. Holton T. A., Graham M. W. A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nucleic Acids Res. 1991 Mar 11;19(5):1156–1156. doi: 10.1093/nar/19.5.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Höller M., Westin G., Jiricny J., Schaffner W. Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev. 1988 Sep;2(9):1127–1135. doi: 10.1101/gad.2.9.1127. [DOI] [PubMed] [Google Scholar]
  33. Jones K. A., Yamamoto K. R., Tjian R. Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. Cell. 1985 Sep;42(2):559–572. doi: 10.1016/0092-8674(85)90113-8. [DOI] [PubMed] [Google Scholar]
  34. Keler T., Barker C. S., Sorof S. Specific growth stimulation by linoleic acid in hepatoma cell lines transfected with the target protein of a liver carcinogen. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4830–4834. doi: 10.1073/pnas.89.11.4830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Khan S. H., Sorof S. Liver fatty acid-binding protein: specific mediator of the mitogenesis induced by two classes of carcinogenic peroxisome proliferators. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):848–852. doi: 10.1073/pnas.91.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kurtz A., Zimmer A., Schnütgen F., Brüning G., Spener F., Müller T. The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development. 1994 Sep;120(9):2637–2649. doi: 10.1242/dev.120.9.2637. [DOI] [PubMed] [Google Scholar]
  37. Meunier-Durmort C., Poirier H., Niot I., Forest C., Besnard P. Up-regulation of the expression of the gene for liver fatty acid-binding protein by long-chain fatty acids. Biochem J. 1996 Oct 15;319(Pt 2):483–487. doi: 10.1042/bj3190483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Moser M., Imhof A., Pscherer A., Bauer R., Amselgruber W., Sinowatz F., Hofstädter F., Schüle R., Buettner R. Cloning and characterization of a second AP-2 transcription factor: AP-2 beta. Development. 1995 Sep;121(9):2779–2788. doi: 10.1242/dev.121.9.2779. [DOI] [PubMed] [Google Scholar]
  39. Ngô V., Gourdji D., Laverrière J. N. Site-specific methylation of the rat prolactin and growth hormone promoters correlates with gene expression. Mol Cell Biol. 1996 Jul;16(7):3245–3254. doi: 10.1128/mcb.16.7.3245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nielsen S. U., Spener F. Fatty acid-binding protein from rat heart is phosphorylated on Tyr19 in response to insulin stimulation. J Lipid Res. 1993 Aug;34(8):1355–1366. [PubMed] [Google Scholar]
  41. O'Brien R. M., Noisin E. L., Suwanichkul A., Yamasaki T., Lucas P. C., Wang J. C., Powell D. R., Granner D. K. Hepatic nuclear factor 3- and hormone-regulated expression of the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes. Mol Cell Biol. 1995 Mar;15(3):1747–1758. doi: 10.1128/mcb.15.3.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Philipp J., Mitchell P. J., Malipiero U., Fontana A. Cell type-specific regulation of expression of transcription factor AP-2 in neuroectodermal cells. Dev Biol. 1994 Oct;165(2):602–614. doi: 10.1006/dbio.1994.1279. [DOI] [PubMed] [Google Scholar]
  43. Prada Carmen, Puga José, Pérez-Méndez Luisa, López Rosario, Ramírez Galo. Spatial and Temporal Patterns of Neurogenesis in the Chick Retina. Eur J Neurosci. 1991 Jun;3(6):559–569. doi: 10.1111/j.1460-9568.1991.tb00843.x. [DOI] [PubMed] [Google Scholar]
  44. Specht B., Bartetzko N., Hohoff C., Kuhl H., Franke R., Börchers T., Spener F. Mammary derived growth inhibitor is not a distinct protein but a mix of heart-type and adipocyte-type fatty acid-binding protein. J Biol Chem. 1996 Aug 16;271(33):19943–19949. doi: 10.1074/jbc.271.33.19943. [DOI] [PubMed] [Google Scholar]
  45. Treuner M., Kozak C. A., Gallahan D., Grosse R., Müller T. Cloning and characterization of the mouse gene encoding mammary-derived growth inhibitor/heart-fatty acid-binding protein. Gene. 1994 Sep 30;147(2):237–242. doi: 10.1016/0378-1119(94)90073-6. [DOI] [PubMed] [Google Scholar]
  46. Tsukiyama T., Becker P. B., Wu C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature. 1994 Feb 10;367(6463):525–532. doi: 10.1038/367525a0. [DOI] [PubMed] [Google Scholar]
  47. Turner D. L., Cepko C. L. A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987 Jul 9;328(6126):131–136. doi: 10.1038/328131a0. [DOI] [PubMed] [Google Scholar]
  48. Turner D. L., Snyder E. Y., Cepko C. L. Lineage-independent determination of cell type in the embryonic mouse retina. Neuron. 1990 Jun;4(6):833–845. doi: 10.1016/0896-6273(90)90136-4. [DOI] [PubMed] [Google Scholar]
  49. Veerkamp J. H., Maatman R. G. Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog Lipid Res. 1995;34(1):17–52. doi: 10.1016/0163-7827(94)00005-7. [DOI] [PubMed] [Google Scholar]
  50. Wadzinski B. E., Wheat W. H., Jaspers S., Peruski L. F., Jr, Lickteig R. L., Johnson G. L., Klemm D. J. Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol Cell Biol. 1993 May;13(5):2822–2834. doi: 10.1128/mcb.13.5.2822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wetts R., Fraser S. E. Multipotent precursors can give rise to all major cell types of the frog retina. Science. 1988 Mar 4;239(4844):1142–1145. doi: 10.1126/science.2449732. [DOI] [PubMed] [Google Scholar]
  52. Wharton K. A., Yedvobnick B., Finnerty V. G., Artavanis-Tsakonas S. opa: a novel family of transcribed repeats shared by the Notch locus and other developmentally regulated loci in D. melanogaster. Cell. 1985 Jan;40(1):55–62. doi: 10.1016/0092-8674(85)90308-3. [DOI] [PubMed] [Google Scholar]
  53. Williams R. W., Goldowitz D. Lineage versus environment in embryonic retina: a revisionist perspective. Trends Neurosci. 1992 Oct;15(10):368–373. doi: 10.1016/0166-2236(92)90181-7. [DOI] [PubMed] [Google Scholar]
  54. Williams R. W., Goldowitz D. Structure of clonal and polyclonal cell arrays in chimeric mouse retina. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1184–1188. doi: 10.1073/pnas.89.4.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Williams T., Tjian R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev. 1991 Apr;5(4):670–682. doi: 10.1101/gad.5.4.670. [DOI] [PubMed] [Google Scholar]
  56. Williamson J. A., Bosher J. M., Skinner A., Sheer D., Williams T., Hurst H. C. Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors. Genomics. 1996 Jul 1;35(1):262–264. doi: 10.1006/geno.1996.0351. [DOI] [PubMed] [Google Scholar]
  57. Wu C. The 5' ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature. 1980 Aug 28;286(5776):854–860. doi: 10.1038/286854a0. [DOI] [PubMed] [Google Scholar]
  58. Yang Y., Spitzer E., Kenney N., Zschiesche W., Li M., Kromminga A., Müller T., Spener F., Lezius A., Veerkamp J. H. Members of the fatty acid binding protein family are differentiation factors for the mammary gland. J Cell Biol. 1994 Nov;127(4):1097–1109. doi: 10.1083/jcb.127.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yoshimura M., Oka T. Isolation and structural analysis of the mouse beta-casein gene. Gene. 1989 May 30;78(2):267–275. doi: 10.1016/0378-1119(89)90229-1. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES