Skip to main content
Microbiology and Molecular Biology Reviews : MMBR logoLink to Microbiology and Molecular Biology Reviews : MMBR
. 1997 Jun;61(2):121–135. doi: 10.1128/mmbr.61.2.121-135.1997

Fate and activity of microorganisms introduced into soil.

J A van Veen 1, L S van Overbeek 1, J D van Elsas 1
PMCID: PMC232604  PMID: 9184007

Abstract

Introduced microorganisms are potentially powerful agents for manipulation of processes and/or components in soil. Fields of application include enhancement of crop growth, protection of crops against plant-pathogenic organisms, stimulation of biodegradation of xenobiotic compounds (bioaugmentation), and improvement of soil structure. Inoculation of soils has already been applied for decades, but it has often yielded inconsistent or disappointing results. This is caused mainly by a commonly observed rapid decline in inoculant population activity following introduction into soil, i.e., a decline of the numbers of inoculant cells and/or a decline of the (average) activity per cell. In this review, we discuss the available information on the effects of key factors that determine the fate and activity of microorganisms introduced into soil, with emphasis on bacteria. The factors addressed include the physiological status of the inoculant cells, the biotic and abiotic interactions in soil, soil properties, and substrate availability. Finally, we address the possibilities available to effectively manipulate the fate and activity of introduced microorganisms in relation to the main areas of their application.

Full Text

The Full Text of this article is available as a PDF (725.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Krumholz L., Stahl D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990 Feb;172(2):762–770. doi: 10.1128/jb.172.2.762-770.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bae H. C., Cota-Robles E. H., Casida L. E. Microflora of soil as viewed by transmission electron microscopy. Appl Microbiol. 1972 Mar;23(3):637–648. doi: 10.1128/am.23.3.637-648.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bashan Y. Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol. 1986 May;51(5):1089–1098. doi: 10.1128/aem.51.5.1089-1098.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bashan Y. Enhancement of Wheat Root Colonization and Plant Development by Azospirillum brasilense Cd. Following Temporary Depression of Rhizosphere Microflora. Appl Environ Microbiol. 1986 May;51(5):1067–1071. doi: 10.1128/aem.51.5.1067-1071.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bashan Y., Puente M. E., Rodriguez-Mendoza M. N., Toledo G., Holguin G., Ferrera-Cerrato R., Pedrin S. Survival of Azospirillum brasilense in the Bulk Soil and Rhizosphere of 23 Soil Types. Appl Environ Microbiol. 1995 May;61(5):1938–1945. doi: 10.1128/aem.61.5.1938-1945.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berry D. F., Hagedorn C. Soil and groundwater transport of microorganisms. Biotechnology. 1991;15:57–73. doi: 10.1016/b978-0-409-90199-3.50010-3. [DOI] [PubMed] [Google Scholar]
  7. Bloem J., Veninga M., Shepherd J. Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl Environ Microbiol. 1995 Mar;61(3):926–936. doi: 10.1128/aem.61.3.926-936.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bottomley P. J., Dughri M. H. Population Size and Distribution of Rhizobium leguminosarum bv. trifolii in Relation to Total Soil Bacteria and Soil Depth. Appl Environ Microbiol. 1989 Apr;55(4):959–964. doi: 10.1128/aem.55.4.959-964.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bottomley P. J., Maggard S. P. Determination of viability within serotypes of a soil population of Rhizobium leguminosarum bv. trifolii. Appl Environ Microbiol. 1990 Feb;56(2):533–540. doi: 10.1128/aem.56.2.533-540.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caesar A. J., Burr T. J. Effect of conditioning, betaine, and sucrose on survival of rhizobacteria in powder formulations. Appl Environ Microbiol. 1991 Jan;57(1):168–172. doi: 10.1128/aem.57.1.168-172.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chatterjee D. K., Kilbane J. J., Chakrabarty A. M. Biodegradation of 2,4,5-trichlorophenoxyacetic acid in soil by a pure culture of Pseudomonas cepacia. Appl Environ Microbiol. 1982 Aug;44(2):514–516. doi: 10.1128/aem.44.2.514-516.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Colbert S. F., Isakeit T., Ferri M., Weinhold A. R., Hendson M., Schroth M. N. Use of an Exotic Carbon Source To Selectively Increase Metabolic Activity and Growth of Pseudomonas putida in Soil. Appl Environ Microbiol. 1993 Jul;59(7):2056–2063. doi: 10.1128/aem.59.7.2056-2063.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Danso S. K., Alexander M. Regulation of predation by prey density: the protozoan-Rhizobium relationship. Appl Microbiol. 1975 Apr;29(4):515–521. doi: 10.1128/am.29.4.515-521.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Devliegher W., Arif M., Verstraete W. Survival and Plant Growth Promotion of Detergent-Adapted Pseudomonas fluorescens ANP15 and Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol. 1995 Nov;61(11):3865–3871. doi: 10.1128/aem.61.11.3865-3871.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Duncan S., Glover L. A., Killham K., Prosser J. I. Luminescence-based detection of activity of starved and viable but nonculturable bacteria. Appl Environ Microbiol. 1994 Apr;60(4):1308–1316. doi: 10.1128/aem.60.4.1308-1316.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Givskov M., Eberl L., Molin S. Responses to nutrient starvation in Pseudomonas putida KT2442: two-dimensional electrophoretic analysis of starvation- and stress-induced proteins. J Bacteriol. 1994 Aug;176(16):4816–4824. doi: 10.1128/jb.176.16.4816-4824.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Givskov M., Eberl L., Møller S., Poulsen L. K., Molin S. Responses to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection, cell shape, and macromolecular content. J Bacteriol. 1994 Jan;176(1):7–14. doi: 10.1128/jb.176.1.7-14.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gottschal J. C. Substrate capturing and growth in various ecosystems. Soc Appl Bacteriol Symp Ser. 1992;21:39S–48S. doi: 10.1111/j.1365-2672.1992.tb03623.x. [DOI] [PubMed] [Google Scholar]
  19. Haack S. K., Garchow H., Klug M. J., Forney L. J. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microbiol. 1995 Apr;61(4):1458–1468. doi: 10.1128/aem.61.4.1458-1468.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Habte M., Alexander M. Protozoa as agents responsible for the decline of Xanthomonas campestris in soil. Appl Microbiol. 1975 Feb;29(2):159–164. doi: 10.1128/am.29.2.159-164.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hahn D., Amann R. I., Ludwig W., Akkermans A. D., Schleifer K. H. Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J Gen Microbiol. 1992 May;138(5):879–887. doi: 10.1099/00221287-138-5-879. [DOI] [PubMed] [Google Scholar]
  22. Hattori T., Hattori R. The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microoganisms. CRC Crit Rev Microbiol. 1976 May;4(4):423–461. doi: 10.3109/10408417609102305. [DOI] [PubMed] [Google Scholar]
  23. Jenkins D. E., Chaisson S. A., Matin A. Starvation-induced cross protection against osmotic challenge in Escherichia coli. J Bacteriol. 1990 May;172(5):2779–2781. doi: 10.1128/jb.172.5.2779-2781.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jenkins D. E., Schultz J. E., Matin A. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol. 1988 Sep;170(9):3910–3914. doi: 10.1128/jb.170.9.3910-3914.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kierstan M., Bucke C. The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol Bioeng. 1977 Mar;19(3):387–397. doi: 10.1002/bit.260190309. [DOI] [PubMed] [Google Scholar]
  26. Kjelleberg S., Humphrey B. A., Marshall K. C. Initial phases of starvation and activity of bacteria at surfaces. Appl Environ Microbiol. 1983 Nov;46(5):978–984. doi: 10.1128/aem.46.5.978-984.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kogure K., Simidu U., Taga N. A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol. 1979 Mar;25(3):415–420. doi: 10.1139/m79-063. [DOI] [PubMed] [Google Scholar]
  28. Kramer J. G., Singleton F. L. Measurement of rRNA Variations in Natural Communities of Microorganisms on the Southeastern U.S. Continental Shelf. Appl Environ Microbiol. 1993 Aug;59(8):2430–2436. doi: 10.1128/aem.59.8.2430-2436.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kramer J. G., Singleton F. L. Variations in rRNA content of marine Vibrio spp. during starvation-survival and recovery. Appl Environ Microbiol. 1992 Jan;58(1):201–207. doi: 10.1128/aem.58.1.201-207.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Matin A. The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol Microbiol. 1991 Jan;5(1):3–10. doi: 10.1111/j.1365-2958.1991.tb01819.x. [DOI] [PubMed] [Google Scholar]
  31. Miethling R., Karlson U. Accelerated Mineralization of Pentachlorophenol in Soil upon Inoculation with Mycobacterium chlorophenolicum PCP1 and Sphingomonas chlorophenolica RA2. Appl Environ Microbiol. 1996 Dec;62(12):4361–4366. doi: 10.1128/aem.62.12.4361-4366.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Morton D. S., Oliver J. D. Induction of Carbon Starvation-Induced Proteins in Vibrio vulnificus. Appl Environ Microbiol. 1994 Oct;60(10):3653–3659. doi: 10.1128/aem.60.10.3653-3659.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nyström T., Olsson R. M., Kjelleberg S. Survival, stress resistance, and alterations in protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients. Appl Environ Microbiol. 1992 Jan;58(1):55–65. doi: 10.1128/aem.58.1.55-65.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Oliver J. D., Bockian R. In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl Environ Microbiol. 1995 Jul;61(7):2620–2623. doi: 10.1128/aem.61.7.2620-2623.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Oliver J. D., Hite F., McDougald D., Andon N. L., Simpson L. M. Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Appl Environ Microbiol. 1995 Jul;61(7):2624–2630. doi: 10.1128/aem.61.7.2624-2630.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pedersen J. C., Jacobsen C. S. Fate of Enterobacter cloacae JP120 and Alcaligenes eutrophus AEO106(pRO101) in soil during water stress: effects on culturability and viability. Appl Environ Microbiol. 1993 May;59(5):1560–1564. doi: 10.1128/aem.59.5.1560-1564.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Postma J., Hok-A-Hin C. H., van Veen J. A. Role of Microniches in Protecting Introduced Rhizobium leguminosarum biovar trifolii against Competition and Predation in Soil. Appl Environ Microbiol. 1990 Feb;56(2):495–502. doi: 10.1128/aem.56.2.495-502.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Prosser J. I. Molecular marker systems for detection of genetically engineered micro-organisms in the environment. Microbiology. 1994 Jan;140(Pt 1):5–17. doi: 10.1099/13500872-140-1-5. [DOI] [PubMed] [Google Scholar]
  39. Rahman I., Shahamat M., Kirchman P. A., Russek-Cohen E., Colwell R. R. Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl Environ Microbiol. 1994 Oct;60(10):3573–3578. doi: 10.1128/aem.60.10.3573-3578.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rodriguez G. G., Phipps D., Ishiguro K., Ridgway H. F. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol. 1992 Jun;58(6):1801–1808. doi: 10.1128/aem.58.6.1801-1808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Roszak D. B., Colwell R. R. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987 Sep;51(3):365–379. doi: 10.1128/mr.51.3.365-379.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Smidsrød O., Skjåk-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990 Mar;8(3):71–78. doi: 10.1016/0167-7799(90)90139-o. [DOI] [PubMed] [Google Scholar]
  43. Stark J. M., Firestone M. K. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol. 1995 Jan;61(1):218–221. doi: 10.1128/aem.61.1.218-221.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stormo K. E., Crawford R. L. Preparation of encapsulated microbial cells for environmental applications. Appl Environ Microbiol. 1992 Feb;58(2):727–730. doi: 10.1128/aem.58.2.727-730.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Thomashow L. S., Weller D. M., Bonsall R. F., Pierson L. S. Production of the antibiotic phenazine-1-carboxylic Acid by fluorescent pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol. 1990 Apr;56(4):908–912. doi: 10.1128/aem.56.4.908-912.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Trebesius K., Amann R., Ludwig W., Mühlegger K., Schleifer K. H. Identification of Whole Fixed Bacterial Cells with Nonradioactive 23S rRNA-Targeted Polynucleotide Probes. Appl Environ Microbiol. 1994 Sep;60(9):3228–3235. doi: 10.1128/aem.60.9.3228-3235.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Van Overbeek L. S., Van Veen J. A., Van Elsas J. D. Induced Reporter Gene Activity, Enhanced Stress Resistance, and Competitive Ability of a Genetically Modified Pseudomonas fluorescens Strain Released into a Field Plot Planted with Wheat. Appl Environ Microbiol. 1997 May;63(5):1965–1973. doi: 10.1128/aem.63.5.1965-1973.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Votyakova T. V., Kaprelyants A. S., Kell D. B. Influence of Viable Cells on the Resuscitation of Dormant Cells in Micrococcus luteus Cultures Held in an Extended Stationary Phase: the Population Effect. Appl Environ Microbiol. 1994 Sep;60(9):3284–3291. doi: 10.1128/aem.60.9.3284-3291.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weichart D., Oliver J. D., Kjelleberg S. Low temperature induced non-culturability and killing of Vibrio vulnificus. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):205–210. doi: 10.1111/j.1574-6968.1992.tb14041.x. [DOI] [PubMed] [Google Scholar]
  50. Wilson M., Lindow S. E. Enhanced Epiphytic Coexistence of Near-Isogenic Salicylate-Catabolizing and Non-Salicylate-Catabolizing Pseudomonas putida Strains after Exogenous Salicylate Application. Appl Environ Microbiol. 1995 Mar;61(3):1073–1076. doi: 10.1128/aem.61.3.1073-1076.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wilson M., Lindow S. E. Relationship of total viable and culturable cells in epiphytic populations of Pseudomonas syringae. Appl Environ Microbiol. 1992 Dec;58(12):3908–3913. doi: 10.1128/aem.58.12.3908-3913.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wilson M., Lindow S. E. Release of recombinant microorganisms. Annu Rev Microbiol. 1993;47:913–944. doi: 10.1146/annurev.mi.47.100193.004405. [DOI] [PubMed] [Google Scholar]
  53. Winding A., Binnerup S. J., Sørensen J. Viability of indigenous soil bacteria assayed by respiratory activity and growth. Appl Environ Microbiol. 1994 Aug;60(8):2869–2875. doi: 10.1128/aem.60.8.2869-2875.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wright D. A., Killham K., Glover L. A., Prosser J. I. Role of Pore Size Location in Determining Bacterial Activity during Predation by Protozoa in Soil. Appl Environ Microbiol. 1995 Oct;61(10):3537–3543. doi: 10.1128/aem.61.10.3537-3543.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zimmermann R., Iturriaga R., Becker-Birck J. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol. 1978 Dec;36(6):926–935. doi: 10.1128/aem.36.6.926-935.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. van Overbeek L. S., Eberl L., Givskov M., Molin S., van Elsas J. D. Survival of, and induced stress resistance in, carbon-starved Pseudomonas fluorescens cells residing in soil. Appl Environ Microbiol. 1995 Dec;61(12):4202–4208. doi: 10.1128/aem.61.12.4202-4208.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. van Overbeek L. S., van Elsas J. D. Root Exudate-Induced Promoter Activity in Pseudomonas fluorescens Mutants in the Wheat Rhizosphere. Appl Environ Microbiol. 1995 Mar;61(3):890–898. doi: 10.1128/aem.61.3.890-898.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiology and Molecular Biology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES