Skip to main content
Microbiology and Molecular Biology Reviews : MMBR logoLink to Microbiology and Molecular Biology Reviews : MMBR
. 1997 Dec;61(4):503–532. doi: 10.1128/mmbr.61.4.503-532.1997

Metabolism of sulfur amino acids in Saccharomyces cerevisiae.

D Thomas 1, Y Surdin-Kerjan 1
PMCID: PMC232622  PMID: 9409150

Abstract

Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases, the transcription activation function of Met4 is prevented by Met30p, which binds to the Met4 inhibitory region. In addition to the Cbf1p-Met4p-Met28p complex, transcriptional regulation involves two zinc finger-containing proteins, Met31p and Met32p. The AdoMet-mediated control of the sulfur amino acid pathway illustrates the molecular strategies used by eucaryotic cells to couple gene expression to metabolic changes.

Full Text

The Full Text of this article is available as a PDF (492.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASAHI T., BANDURSKI R. S., WILSON L. G. Yeast sulfate-reducing system. II. Enzymatic reduction of protein disulfide. J Biol Chem. 1961 Jun;236:1830–1835. [PubMed] [Google Scholar]
  2. Agre P., Johnson P. F., McKnight S. L. Cognate DNA binding specificity retained after leucine zipper exchange between GCN4 and C/EBP. Science. 1989 Nov 17;246(4932):922–926. doi: 10.1126/science.2530632. [DOI] [PubMed] [Google Scholar]
  3. Andre B. An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast. 1995 Dec;11(16):1575–1611. doi: 10.1002/yea.320111605. [DOI] [PubMed] [Google Scholar]
  4. Avram D., Bakalinsky A. T. Multicopy FZF1 (SUL1) suppresses the sulfite sensitivity but not the glucose derepression or aberrant cell morphology of a grr1 mutant of Saccharomyces cerevisiae. Genetics. 1996 Oct;144(2):511–521. doi: 10.1093/genetics/144.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Backlund P. S., Jr, Chang C. P., Smith R. A. Identification of 2-keto-4-methylthiobutyrate as an intermediate compound in methionine synthesis from 5'-methylthioadenosine. J Biol Chem. 1982 Apr 25;257(8):4196–4202. [PubMed] [Google Scholar]
  6. Bai C., Sen P., Hofmann K., Ma L., Goebl M., Harper J. W., Elledge S. J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 1996 Jul 26;86(2):263–274. doi: 10.1016/s0092-8674(00)80098-7. [DOI] [PubMed] [Google Scholar]
  7. Baker R. E., Fitzgerald-Hayes M., O'Brien T. C. Purification of the yeast centromere binding protein CP1 and a mutational analysis of its binding site. J Biol Chem. 1989 Jun 25;264(18):10843–10850. [PubMed] [Google Scholar]
  8. Baker R. E., Masison D. C. Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1. Mol Cell Biol. 1990 Jun;10(6):2458–2467. doi: 10.1128/mcb.10.6.2458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Banta L. M., Vida T. A., Herman P. K., Emr S. D. Characterization of yeast Vps33p, a protein required for vacuolar protein sorting and vacuole biogenesis. Mol Cell Biol. 1990 Sep;10(9):4638–4649. doi: 10.1128/mcb.10.9.4638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Baroni M., Livian S., Martegani E., Alberghina L. Molecular cloning and regulation of the expression of the MET2 gene of Saccharomyces cerevisiae. Gene. 1986;46(1):71–78. doi: 10.1016/0378-1119(86)90168-x. [DOI] [PubMed] [Google Scholar]
  11. Barral Y., Jentsch S., Mann C. G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev. 1995 Feb 15;9(4):399–409. doi: 10.1101/gad.9.4.399. [DOI] [PubMed] [Google Scholar]
  12. Barton A. B., Kaback D. B., Clark M. W., Keng T., Ouellette B. F., Storms R. K., Zeng B., Zhong W., Fortin N., Delaney S. Physical localization of yeast CYS3, a gene whose product resembles the rat gamma-cystathionase and Escherichia coli cystathionine gamma-synthase enzymes. Yeast. 1993 Apr;9(4):363–369. doi: 10.1002/yea.320090406. [DOI] [PubMed] [Google Scholar]
  13. Berendt U., Haverkamp T., Prior A., Schwenn J. D. Reaction mechanism of thioredoxin: 3'-phospho-adenylylsulfate reductase investigated by site-directed mutagenesis. Eur J Biochem. 1995 Oct 1;233(1):347–356. doi: 10.1111/j.1432-1033.1995.347_1.x. [DOI] [PubMed] [Google Scholar]
  14. Blackwood E. M., Eisenman R. N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991 Mar 8;251(4998):1211–1217. doi: 10.1126/science.2006410. [DOI] [PubMed] [Google Scholar]
  15. Blaiseau P. L., Isnard A. D., Surdin-Kerjan Y., Thomas D. Met31p and Met32p, two related zinc finger proteins, are involved in transcriptional regulation of yeast sulfur amino acid metabolism. Mol Cell Biol. 1997 Jul;17(7):3640–3648. doi: 10.1128/mcb.17.7.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Borges-Walmsley M. I., Turner G., Bailey A. M., Brown J., Lehmbeck J., Clausen I. G. Isolation and characterisation of genes for sulphate activation and reduction in Aspergillus nidulans: implications for evolution of an allosteric control region by gene duplication. Mol Gen Genet. 1995 May 20;247(4):423–429. doi: 10.1007/BF00293143. [DOI] [PubMed] [Google Scholar]
  17. Bram R. J., Kornberg R. D. Isolation of a Saccharomyces cerevisiae centromere DNA-binding protein, its human homolog, and its possible role as a transcription factor. Mol Cell Biol. 1987 Jan;7(1):403–409. doi: 10.1128/mcb.7.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Breton A., Surdin-Kerjan Y. Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol. 1977 Oct;132(1):224–232. doi: 10.1128/jb.132.1.224-232.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Burton E. G., Metzenberg R. L. Novel mutation causing derepression of several enzymes of sulfur metabolism in Neurospora crassa. J Bacteriol. 1972 Jan;109(1):140–151. doi: 10.1128/jb.109.1.140-151.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Burton E., Selhub J., Sakami W. The substrate specificity of 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase. Biochem J. 1969 Mar;111(5):793–795. doi: 10.1042/bj1110793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Busch A. E., Waldegger S., Herzer T., Biber J., Markovich D., Murer H., Lang F. Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+SO4(2-) transport protein NaSi-1. J Biol Chem. 1994 Apr 29;269(17):12407–12409. [PubMed] [Google Scholar]
  22. Cabrero C., Alemany S. Conversion of rat liver S-adenosyl-L-methionine synthetase from high-Mr form to low-Mr form by LiBr. Biochim Biophys Acta. 1988 Feb 10;952(3):277–281. doi: 10.1016/0167-4838(88)90127-6. [DOI] [PubMed] [Google Scholar]
  23. Cabrero C., Puerta J., Alemany S. Purification and comparison of two forms of S-adenosyl-L-methionine synthetase from rat liver. Eur J Biochem. 1987 Dec 30;170(1-2):299–304. doi: 10.1111/j.1432-1033.1987.tb13699.x. [DOI] [PubMed] [Google Scholar]
  24. Cai M. J., Davis R. W. Purification of a yeast centromere-binding protein that is able to distinguish single base-pair mutations in its recognition site. Mol Cell Biol. 1989 Jun;9(6):2544–2550. doi: 10.1128/mcb.9.6.2544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Cai M., Davis R. W. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell. 1990 May 4;61(3):437–446. doi: 10.1016/0092-8674(90)90525-j. [DOI] [PubMed] [Google Scholar]
  26. Casalone E., Colella C. M., Daly S., Fontana S., Torricelli I., Polsinelli M. Cloning and characterization of a sulphite-resistance gene of Saccharomyces cerevisiae. Yeast. 1994 Aug;10(8):1101–1110. doi: 10.1002/yea.320100812. [DOI] [PubMed] [Google Scholar]
  27. Casalone E., Colella C. M., Daly S., Gallori E., Moriani L., Polsinelli M. Mechanism of resistance to sulphite in Saccharomyces cerevisiae. Curr Genet. 1992 Dec;22(6):435–440. doi: 10.1007/BF00326407. [DOI] [PubMed] [Google Scholar]
  28. Casalone E., Colella C. M., Ricci F., Polsinelli M. Isolation and characterization of Saccharomyces cerevisiae mutants resistant to sulphite. Yeast. 1989 Apr;5(Spec No):S287–S291. [PubMed] [Google Scholar]
  29. Chang E. C., Kosman D. J. O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae. J Bacteriol. 1990 Apr;172(4):1840–1845. doi: 10.1128/jb.172.4.1840-1845.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Chen Z., Chakraborty S., Banerjee R. Demonstration that mammalian methionine synthases are predominantly cobalamin-loaded. J Biol Chem. 1995 Aug 18;270(33):19246–19249. doi: 10.1074/jbc.270.33.19246. [DOI] [PubMed] [Google Scholar]
  31. Cherest H., Davidian J. C., Thomas D., Benes V., Ansorge W., Surdin-Kerjan Y. Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics. 1997 Mar;145(3):627–635. doi: 10.1093/genetics/145.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Cherest H., Eichler F., Robichon-Szulmajster H. Genetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1969 Jan;97(1):328–336. doi: 10.1128/jb.97.1.328-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Cherest H., Kerjan P., Surdin-Kerjan Y. The Saccharomyces cerevisiae MET3 gene: nucleotide sequence and relationship of the 5' non-coding region to that of MET25. Mol Gen Genet. 1987 Dec;210(2):307–313. doi: 10.1007/BF00325699. [DOI] [PubMed] [Google Scholar]
  34. Cherest H., Nguyen N. T., Surdin-Kerjan Y. Transcriptional regulation of the MET3 gene of Saccharomyces cerevisiae. Gene. 1985;34(2-3):269–281. doi: 10.1016/0378-1119(85)90136-2. [DOI] [PubMed] [Google Scholar]
  35. Cherest H., Surdin-Kerjan Y., Antoniewski J., Robichon-Szulmajster H. S-adenosyl methionine-mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae. J Bacteriol. 1973 Jun;114(3):928–933. doi: 10.1128/jb.114.3.928-933.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Cherest H., Surdin-Kerjan Y., Antoniewski J., de Robichon-Szulmajster H. Effects of regulatory mutations upon methionine biosynthesis in Saccharomyces cerevisiae: loci eth2-eth3-eth10. J Bacteriol. 1973 Sep;115(3):1084–1093. doi: 10.1128/jb.115.3.1084-1093.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Cherest H., Surdin-Kerjan Y., De Robichon-Szulmajster H. Methionine-and S-adenosyl methionine-mediated repression in a methionyl-transfer ribonucleic-acid synthetase mutant of Saccharomyces cerevisiae. J Bacteriol. 1975 Aug;123(2):428–435. doi: 10.1128/jb.123.2.428-435.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Cherest H., Surdin-Kerjan Y. Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics. 1992 Jan;130(1):51–58. doi: 10.1093/genetics/130.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Cherest H., Surdin-Kerjan Y. S-adenosyl methionine requiring mutants in Saccharomyces cerevisiae: evidences for the existence of two methionine adenosyl transferases. Mol Gen Genet. 1978 Jul 11;163(2):153–167. doi: 10.1007/BF00267406. [DOI] [PubMed] [Google Scholar]
  40. Cherest H., Thomas D., Surdin-Kerjan Y. Cysteine biosynthesis in Saccharomyces cerevisiae occurs through the transsulfuration pathway which has been built up by enzyme recruitment. J Bacteriol. 1993 Sep;175(17):5366–5374. doi: 10.1128/jb.175.17.5366-5374.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Chiang P. K., Cantoni G. L. Activation of methionine for transmethylation. Purification of the S-adenosylmethionine synthetase of bakers' yeast and its separation into two forms. J Biol Chem. 1977 Jul 10;252(13):4506–4513. [PubMed] [Google Scholar]
  42. Chou T. C., Talalay P. The mechanism of S-adenosyl-L-methionine synthesis by purified preparations of bakers' yeast. Biochemistry. 1972 Mar 14;11(6):1065–1073. doi: 10.1021/bi00756a019. [DOI] [PubMed] [Google Scholar]
  43. Cone M. C., Marchitto K., Zehfus B., Ferro A. J. Utilization by Saccharomyces cerevisiae of 5'-methylthioadenosine as a source of both purine and methionine. J Bacteriol. 1982 Jul;151(1):510–515. doi: 10.1128/jb.151.1.510-515.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Connelly C., Hieter P. Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell. 1996 Jul 26;86(2):275–285. doi: 10.1016/S0092-8674(00)80099-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Cornell K. A., Winter R. W., Tower P. A., Riscoe M. K. Affinity purification of 5-methylthioribose kinase and 5-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Klebsiella pneumoniae [corrected]. Biochem J. 1996 Jul 1;317(Pt 1):285–290. doi: 10.1042/bj3170285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Cost G. J., Boeke J. D. A useful colony colour phenotype associated with the yeast selectable/counter-selectable marker MET15. Yeast. 1996 Aug;12(10):939–941. doi: 10.1002/(SICI)1097-0061(199608)12:10%3C939::AID-YEA988%3E3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  47. Cram J. Characteristics of sulfate transport across plasmalemma and tonoplast of carrot root cells. Plant Physiol. 1983 May;72(1):204–211. doi: 10.1104/pp.72.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Csaikl U., Csaikl F. Molecular cloning and characterization of the MET6 gene of Saccharomyces cerevisiae. Gene. 1986;46(2-3):207–214. doi: 10.1016/0378-1119(86)90405-1. [DOI] [PubMed] [Google Scholar]
  49. Cumberledge S., Carbon J. Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics. 1987 Oct;117(2):203–212. doi: 10.1093/genetics/117.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Dang C. V., Dolde C., Gillison M. L., Kato G. J. Discrimination between related DNA sites by a single amino acid residue of Myc-related basic-helix-loop-helix proteins. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):599–602. doi: 10.1073/pnas.89.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Datko A. H., Giovanelli J., Mudd S. H. Homocysteine biosynthesis in green plants. O-Phosphorylhomoserine as the physiological substrate for cystathionine gamma-synthase. J Biol Chem. 1974 Feb 25;249(4):1139–1155. [PubMed] [Google Scholar]
  52. Dowell S. J., Tsang J. S., Mellor J. The centromere and promoter factor 1 of yeast contains a dimerisation domain located carboxy-terminal to the bHLH domain. Nucleic Acids Res. 1992 Aug 25;20(16):4229–4236. doi: 10.1093/nar/20.16.4229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Duerre J. A. In vivo and in vitro metabolism of S-adenosyl-L-homocysteine by Saccharomyces cerevisiae. Arch Biochem Biophys. 1968 Mar 20;124(1):422–430. doi: 10.1016/0003-9861(68)90347-0. [DOI] [PubMed] [Google Scholar]
  54. Dénarié J., Debellé F., Rosenberg C. Signaling and host range variation in nodulation. Annu Rev Microbiol. 1992;46:497–531. doi: 10.1146/annurev.mi.46.100192.002433. [DOI] [PubMed] [Google Scholar]
  55. Eichel J., González J. C., Hotze M., Matthews R. G., Schröder J. Vitamin-B12-independent methionine synthase from a higher plant (Catharanthus roseus). Molecular characterization, regulation, heterologous expression, and enzyme properties. Eur J Biochem. 1995 Jun 15;230(3):1053–1058. doi: 10.1111/j.1432-1033.1995.tb20655.x. [DOI] [PubMed] [Google Scholar]
  56. Ellenberger T. E., Brandl C. J., Struhl K., Harrison S. C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell. 1992 Dec 24;71(7):1223–1237. doi: 10.1016/s0092-8674(05)80070-4. [DOI] [PubMed] [Google Scholar]
  57. Espartero J., Pintor-Toro J. A., Pardo J. M. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol. 1994 May;25(2):217–227. doi: 10.1007/BF00023239. [DOI] [PubMed] [Google Scholar]
  58. Farooqui J. Z., Lee H. W., Kim S., Paik W. K. Studies on compartmentation of S-adenosyl-L-methionine in Saccharomyces cerevisiae and isolated rat hepatocytes. Biochim Biophys Acta. 1983 Jun 9;757(3):342–351. [PubMed] [Google Scholar]
  59. Ferro A. J., Barrett A., Shapiro S. K. 5-Methylthioribose kinase. A new enzyme involved in the formation of methionine from 5-methylthioribose. J Biol Chem. 1978 Sep 10;253(17):6021–6025. [PubMed] [Google Scholar]
  60. Fitzgerald-Hayes M., Buhler J. M., Cooper T. G., Carbon J. Isolation and subcloning analysis of functional centromere DNA (CEN11) from Saccharomyces cerevisiae chromosome XI. Mol Cell Biol. 1982 Jan;2(1):82–87. doi: 10.1128/mcb.2.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Foglino M., Borne F., Bally M., Ball G., Patte J. C. A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology. 1995 Feb;141(Pt 2):431–439. doi: 10.1099/13500872-141-2-431. [DOI] [PubMed] [Google Scholar]
  62. Foreman P. K., Davis R. W. Point mutations that separate the role of Saccharomyces cerevisiae centromere binding factor 1 in chromosome segregation from its role in transcriptional activation. Genetics. 1993 Oct;135(2):287–296. doi: 10.1093/genetics/135.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Foster B. A., Thomas S. M., Mahr J. A., Renosto F., Patel H. C., Segel I. H. Cloning and sequencing of ATP sulfurylase from Penicillium chrysogenum. Identification of a likely allosteric domain. J Biol Chem. 1994 Aug 5;269(31):19777–19786. [PubMed] [Google Scholar]
  64. Fu Y. H., Paietta J. V., Mannix D. G., Marzluf G. A. cys-3, the positive-acting sulfur regulatory gene of Neurospora crassa, encodes a protein with a putative leucine zipper DNA-binding element. Mol Cell Biol. 1989 Mar;9(3):1120–1127. doi: 10.1128/mcb.9.3.1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Gan Z. R. Yeast thioredoxin genes. J Biol Chem. 1991 Jan 25;266(3):1692–1696. [PubMed] [Google Scholar]
  66. Gillespie D., Demerec M., Itikawa H. Appearance of double mutants in aged cultures of Salmonella typhimurium cysteine-requiring strains. Genetics. 1968 Aug;59(4):433–442. doi: 10.1093/genetics/59.4.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Giovanelli J., Mudd S. H., Datko A. H. Homoserine esterification in green plants. Plant Physiol. 1974 Nov;54(5):725–736. doi: 10.1104/pp.54.5.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Gits J. J., Grenson M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. 3. Evidence for a specific methionine-transporting system. Biochim Biophys Acta. 1967 Jul 3;135(3):507–516. doi: 10.1016/0005-2736(67)90040-5. [DOI] [PubMed] [Google Scholar]
  69. Gläser H. U., Thomas D., Gaxiola R., Montrichard F., Surdin-Kerjan Y., Serrano R. Salt tolerance and methionine biosynthesis in Saccharomyces cerevisiae involve a putative phosphatase gene. EMBO J. 1993 Aug;12(8):3105–3110. doi: 10.1002/j.1460-2075.1993.tb05979.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Gonzalez Porqué P., Baldesten A., Reichard P. Purification of a thioredoxin system from yeast. J Biol Chem. 1970 May 10;245(9):2363–2370. [PubMed] [Google Scholar]
  71. Gonzalez Porqué P., Baldesten A., Reichard P. The involvement of the thioredoxin system in the reduction of methionine sulfoxide and sulfate. J Biol Chem. 1970 May 10;245(9):2371–2374. [PubMed] [Google Scholar]
  72. Goyon C., Faugeron G., Rossignol J. L. Molecular cloning and characterization of the met2 gene from Ascobolus immersus. Gene. 1988 Mar 31;63(2):297–308. doi: 10.1016/0378-1119(88)90533-1. [DOI] [PubMed] [Google Scholar]
  73. Gralla E. B., Kosman D. J. Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv Genet. 1992;30:251–319. doi: 10.1016/s0065-2660(08)60322-3. [DOI] [PubMed] [Google Scholar]
  74. Greene R. C. Kinetic studies of the mechanism of S-adenosylmethionine synthetase from yeast. Biochemistry. 1969 Jun;8(6):2255–2265. doi: 10.1021/bi00834a004. [DOI] [PubMed] [Google Scholar]
  75. Grueneberg D. A., Natesan S., Alexandre C., Gilman M. Z. Human and Drosophila homeodomain proteins that enhance the DNA-binding activity of serum response factor. Science. 1992 Aug 21;257(5073):1089–1095. doi: 10.1126/science.257.5073.1089. [DOI] [PubMed] [Google Scholar]
  76. Gutierrez-Marcos J. F., Roberts M. A., Campbell E. I., Wray J. L. Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and "APS reductase" activity. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13377–13382. doi: 10.1073/pnas.93.23.13377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Hansen J., Kielland-Brandt M. C. Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production. Nat Biotechnol. 1996 Nov;14(11):1587–1591. doi: 10.1038/nbt1196-1587. [DOI] [PubMed] [Google Scholar]
  78. Hansen J., Muldbjerg M., Chérest H., Surdin-Kerjan Y. Siroheme biosynthesis in Saccharomyces cerevisiae requires the products of both the MET1 and MET8 genes. FEBS Lett. 1997 Jan 13;401(1):20–24. doi: 10.1016/s0014-5793(96)01423-8. [DOI] [PubMed] [Google Scholar]
  79. Hawes C. S., Nicholas D. J. Adenosine 5'-triphosphate sulphurylase from Saccharomyces cerevisiae. Biochem J. 1973 Jul;133(3):541–550. doi: 10.1042/bj1330541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Hegemann J. H., Fleig U. N. The centromere of budding yeast. Bioessays. 1993 Jul;15(7):451–460. doi: 10.1002/bies.950150704. [DOI] [PubMed] [Google Scholar]
  81. Hieter P., Pridmore D., Hegemann J. H., Thomas M., Davis R. W., Philippsen P. Functional selection and analysis of yeast centromeric DNA. Cell. 1985 Oct;42(3):913–921. doi: 10.1016/0092-8674(85)90287-9. [DOI] [PubMed] [Google Scholar]
  82. Hope I. A., Struhl K. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell. 1986 Sep 12;46(6):885–894. doi: 10.1016/0092-8674(86)90070-x. [DOI] [PubMed] [Google Scholar]
  83. Horikawa S., Ozasa H., Ota K., Tsukada K. Immunohistochemical analysis of rat S-adenosylmethionine synthetase isozymes in developmental liver. FEBS Lett. 1993 Sep 20;330(3):307–311. doi: 10.1016/0014-5793(93)80894-z. [DOI] [PubMed] [Google Scholar]
  84. Horikawa S., Tsukada K. Molecular cloning and developmental expression of a human kidney S-adenosylmethionine synthetase. FEBS Lett. 1992 Nov 2;312(1):37–41. doi: 10.1016/0014-5793(92)81405-b. [DOI] [PubMed] [Google Scholar]
  85. Horikawa S., Tsukada K. Molecular cloning and nucleotide sequence of cDNA encoding the human liver S-adenosylmethionine synthetase. Biochem Int. 1991 Sep;25(1):81–90. [PubMed] [Google Scholar]
  86. Isnard A. D., Thomas D., Surdin-Kerjan Y. The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases. J Mol Biol. 1996 Oct 4;262(4):473–484. doi: 10.1006/jmbi.1996.0529. [DOI] [PubMed] [Google Scholar]
  87. Iwashima A., Ogata M., Nosaka K., Nishimura H., Hasegawa T. Adenosine kinase-deficient mutant of Saccharomyces cerevisiae. FEMS Microbiol Lett. 1995 Mar 15;127(1-2):23–28. doi: 10.1111/j.1574-6968.1995.tb07444.x. [DOI] [PubMed] [Google Scholar]
  88. Jacquemin-Faure I., Thomas D., Laporte J., Cibert C., Surdin-Kerjan Y. The vacuolar compartment is required for sulfur amino acid homeostasis in Saccharomyces cerevisiae. Mol Gen Genet. 1994 Sep 1;244(5):519–529. doi: 10.1007/BF00583903. [DOI] [PubMed] [Google Scholar]
  89. Jakubowski H., Goldman E. Methionine-mediated lethality in yeast cells at elevated temperature. J Bacteriol. 1993 Sep;175(17):5469–5476. doi: 10.1128/jb.175.17.5469-5476.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Jiang W. D., Philippsen P. Purification of a protein binding to the CDEI subregion of Saccharomyces cerevisiae centromere DNA. Mol Cell Biol. 1989 Dec;9(12):5585–5593. doi: 10.1128/mcb.9.12.5585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Jiranek V., Langridge P., Henschke P. A. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Appl Environ Microbiol. 1995 Feb;61(2):461–467. doi: 10.1128/aem.61.2.461-467.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Jones E. W. Proteinase mutants of Saccharomyces cerevisiae. Genetics. 1977 Jan;85(1):23–33. doi: 10.1093/genetics/85.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Kellogg W. W., Cadle R. D., Allen E. R., Lazrus A. L., Martell E. A. The sulfur cycle. Science. 1972 Feb 11;175(4022):587–596. doi: 10.1126/science.175.4022.587. [DOI] [PubMed] [Google Scholar]
  94. Kent N. A., Tsang J. S., Crowther D. J., Mellor J. Chromatin structure modulation in Saccharomyces cerevisiae by centromere and promoter factor 1. Mol Cell Biol. 1994 Aug;14(8):5229–5241. doi: 10.1128/mcb.14.8.5229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Kerjan P., Cherest H., Surdin-Kerjan Y. Nucleotide sequence of the Saccharomyces cerevisiae MET25 gene. Nucleic Acids Res. 1986 Oct 24;14(20):7861–7871. doi: 10.1093/nar/14.20.7861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Kerr D. S. O-acetylhomoserine sulfhydrylase from Neurospora. Purification and consideration of its function in homocysteine and methionine synthesis. J Biol Chem. 1971 Jan 10;246(1):95–102. [PubMed] [Google Scholar]
  97. Ketter J. S., Jarai G., Fu Y. H., Marzluf G. A. Nucleotide sequence, messenger RNA stability, and DNA recognition elements of cys-14, the structural gene for sulfate permease II in Neurospora crassa. Biochemistry. 1991 Feb 19;30(7):1780–1787. doi: 10.1021/bi00221a008. [DOI] [PubMed] [Google Scholar]
  98. Kim Y. J., Francisco L., Chen G. C., Marcotte E., Chan C. S. Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation. J Cell Biol. 1994 Dec;127(5):1381–1394. doi: 10.1083/jcb.127.5.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Kitamoto K., Yoshizawa K., Ohsumi Y., Anraku Y. Mutants of Saccharomyces cerevisiae with defective vacuolar function. J Bacteriol. 1988 Jun;170(6):2687–2691. doi: 10.1128/jb.170.6.2687-2691.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Klionsky D. J., Herman P. K., Emr S. D. The fungal vacuole: composition, function, and biogenesis. Microbiol Rev. 1990 Sep;54(3):266–292. doi: 10.1128/mr.54.3.266-292.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Klonus D., Höfgen R., Willmitzer L., Riesmeier J. W. Isolation and characterization of two cDNA clones encoding ATP-sulfurylases from potato by complementation of a yeast mutant. Plant J. 1994 Jul;6(1):105–112. doi: 10.1046/j.1365-313x.1994.6010105.x. [DOI] [PubMed] [Google Scholar]
  102. Klonus D., Riesmeier J. W., Willmitzer L. A cDNA clone for an ATP-sulfurylase from Arabidopsis thaliana. Plant Physiol. 1995 Feb;107(2):653–654. doi: 10.1104/pp.107.2.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Knudsen R. C., Moore K., Yall I. Uptake and utilization of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine in an adenine mutant of Saccharomyces cerevisiae. J Bacteriol. 1969 May;98(2):629–636. doi: 10.1128/jb.98.2.629-636.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Knudsen R. C., Yall I. Partial purification and characterization of S-adenosylhomocysteine hydrolase isolated from Saccharomyces cerevisiae. J Bacteriol. 1972 Oct;112(1):569–575. doi: 10.1128/jb.112.1.569-575.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Kobayashi K., Yoshimoto A. Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics. Biochim Biophys Acta. 1982 Aug 10;705(3):348–356. doi: 10.1016/0167-4838(82)90257-6. [DOI] [PubMed] [Google Scholar]
  106. Kobayashi K., Yoshimoto A. Studies on yeast sulfite reductase. V. Effects of ionic strength on enzyme activities. Biochim Biophys Acta. 1982 Dec 6;709(1):38–45. doi: 10.1016/0167-4838(82)90418-6. [DOI] [PubMed] [Google Scholar]
  107. Kobayashi K., Yoshimoto A. Studies on yeast sulfite reductase. VI. Use of the effects of ionic strength as a probe for enzyme structure and mechanism. Biochim Biophys Acta. 1982 Dec 6;709(1):46–52. doi: 10.1016/0167-4838(82)90419-8. [DOI] [PubMed] [Google Scholar]
  108. Komachi K., Redd M. J., Johnson A. D. The WD repeats of Tup1 interact with the homeo domain protein alpha 2. Genes Dev. 1994 Dec 1;8(23):2857–2867. doi: 10.1101/gad.8.23.2857. [DOI] [PubMed] [Google Scholar]
  109. Korch C., Mountain H. A., Byström A. S. Cloning, nucleotide sequence, and regulation of MET14, the gene encoding the APS kinase of Saccharomyces cerevisiae. Mol Gen Genet. 1991 Sep;229(1):96–108. doi: 10.1007/BF00264218. [DOI] [PubMed] [Google Scholar]
  110. Kredich N. M. The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli. Mol Microbiol. 1992 Oct;6(19):2747–2753. doi: 10.1111/j.1365-2958.1992.tb01453.x. [DOI] [PubMed] [Google Scholar]
  111. Krems B., Charizanis C., Entian K. D. Mutants of Saccharomyces cerevisiae sensitive to oxidative and osmotic stress. Curr Genet. 1995 Apr;27(5):427–434. doi: 10.1007/BF00311211. [DOI] [PubMed] [Google Scholar]
  112. Kruger W. D., Cox D. R. A yeast assay for functional detection of mutations in the human cystathionine beta-synthase gene. Hum Mol Genet. 1995 Jul;4(7):1155–1161. doi: 10.1093/hmg/4.7.1155. [DOI] [PubMed] [Google Scholar]
  113. Kruger W. D., Cox D. R. A yeast system for expression of human cystathionine beta-synthase: structural and functional conservation of the human and yeast genes. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6614–6618. doi: 10.1073/pnas.91.14.6614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Kumar A., Paietta J. V. The sulfur controller-2 negative regulatory gene of Neurospora crassa encodes a protein with beta-transducin repeats. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3343–3347. doi: 10.1073/pnas.92.8.3343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Kuras L., Barbey R., Thomas D. Assembly of a bZIP-bHLH transcription activation complex: formation of the yeast Cbf1-Met4-Met28 complex is regulated through Met28 stimulation of Cbf1 DNA binding. EMBO J. 1997 May 1;16(9):2441–2451. doi: 10.1093/emboj/16.9.2441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Kuras L., Cherest H., Surdin-Kerjan Y., Thomas D. A heteromeric complex containing the centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, mediates the transcription activation of yeast sulfur metabolism. EMBO J. 1996 May 15;15(10):2519–2529. [PMC free article] [PubMed] [Google Scholar]
  117. Kuras L., Thomas D. Functional analysis of Met4, a yeast transcriptional activator responsive to S-adenosylmethionine. Mol Cell Biol. 1995 Jan;15(1):208–216. doi: 10.1128/mcb.15.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Kuras L., Thomas D. Identification of the yeast methionine biosynthetic genes that require the centromere binding factor 1 for their transcriptional activation. FEBS Lett. 1995 Jun 19;367(1):15–18. doi: 10.1016/0014-5793(95)00528-h. [DOI] [PubMed] [Google Scholar]
  119. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  120. Langin T., Faugeron G., Goyon C., Nicolas A., Rossignol J. L. The MET2 gene of Saccharomyces cerevisiae: molecular cloning and nucleotide sequence. Gene. 1986;49(3):283–293. doi: 10.1016/0378-1119(86)90364-1. [DOI] [PubMed] [Google Scholar]
  121. Lauder S., Bankmann M., Guzder S. N., Sung P., Prakash L., Prakash S. Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription. Mol Cell Biol. 1996 Dec;16(12):6783–6793. doi: 10.1128/mcb.16.12.6783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Leustek T., Murillo M., Cervantes M. Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. Plant Physiol. 1994 Jul;105(3):897–902. doi: 10.1104/pp.105.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Leuther K. K., Johnston S. A. Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science. 1992 May 29;256(5061):1333–1335. doi: 10.1126/science.1598579. [DOI] [PubMed] [Google Scholar]
  124. Leyh T. S., Suo Y. GTPase-mediated activation of ATP sulfurylase. J Biol Chem. 1992 Jan 5;267(1):542–545. [PubMed] [Google Scholar]
  125. Leyh T. S. The physical biochemistry and molecular genetics of sulfate activation. Crit Rev Biochem Mol Biol. 1993;28(6):515–542. doi: 10.3109/10409239309085137. [DOI] [PubMed] [Google Scholar]
  126. Leyh T. S., Vogt T. F., Suo Y. The DNA sequence of the sulfate activation locus from Escherichia coli K-12. J Biol Chem. 1992 May 25;267(15):10405–10410. [PubMed] [Google Scholar]
  127. Li H., Deyrup A., Mensch J. R., Jr, Domowicz M., Konstantinidis A. K., Schwartz N. B. The isolation and characterization of cDNA encoding the mouse bifunctional ATP sulfurylase-adenosine 5'-phosphosulfate kinase. J Biol Chem. 1995 Dec 8;270(49):29453–29459. doi: 10.1074/jbc.270.49.29453. [DOI] [PubMed] [Google Scholar]
  128. Li Q., Marzluf G. A. Determination of the Neurospora crassa CYS 3 sulfur regulatory protein consensus DNA-binding site: amino-acid substitutions in the CYS3 bZIP domain that alter DNA-binding specificity. Curr Genet. 1996 Sep;30(4):298–304. doi: 10.1007/s002940050136. [DOI] [PubMed] [Google Scholar]
  129. Li X., Chang Y. H. Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12357–12361. doi: 10.1073/pnas.92.26.12357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Lik-Shing Tsang M., Schiff J. A. Properties of enzyme fraction A from Chlorella and copurification of 3' (2'), 5'-biphosphonucleoside 3' (2')-phosphohydrolase, adenosine 5'phosphosulfate sulfohydrolase and adenosine-5'-phosphosulfate cyclase activities. Eur J Biochem. 1976 May 17;65(1):113–121. doi: 10.1111/j.1432-1033.1976.tb10395.x. [DOI] [PubMed] [Google Scholar]
  131. Liu C., Martin E., Leyh T. S. GTPase activation of ATP sulfurylase: the mechanism. Biochemistry. 1994 Mar 1;33(8):2042–2047. doi: 10.1021/bi00174a009. [DOI] [PubMed] [Google Scholar]
  132. Liu C., Suo Y., Leyh T. S. The energetic linkage of GTP hydrolysis and the synthesis of activated sulfate. Biochemistry. 1994 Jun 14;33(23):7309–7314. doi: 10.1021/bi00189a036. [DOI] [PubMed] [Google Scholar]
  133. Lobo Z., Maitra P. K. Pentose phosphate pathway mutants of yeast. Mol Gen Genet. 1982;185(2):367–368. doi: 10.1007/BF00330815. [DOI] [PubMed] [Google Scholar]
  134. Logan H. M., Cathala N., Grignon C., Davidian J. C. Cloning of a cDNA encoded by a member of the Arabidopsis thaliana ATP sulfurylase multigene family. Expression studies in yeast and in relation to plant sulfur nutrition. J Biol Chem. 1996 May 24;271(21):12227–12233. doi: 10.1074/jbc.271.21.12227. [DOI] [PubMed] [Google Scholar]
  135. Lupidi G., Marmocchi F., Falasca M., Venardi G., Cristalli G., Grifantini M., Whitehead E., Riva F. Adenosine deaminase from Saccharomyces cerevisiae: kinetics and interaction with transition and ground state inhibitors. Biochim Biophys Acta. 1992 Aug 21;1122(3):311–316. doi: 10.1016/0167-4838(92)90410-f. [DOI] [PubMed] [Google Scholar]
  136. Lyle S., Ozeran J. D., Stanczak J., Westley J., Schwartz N. B. Intermediate channeling between ATP sulfurylase and adenosine 5'-phosphosulfate kinase from rat chondrosarcoma. Biochemistry. 1994 Jun 7;33(22):6822–6827. doi: 10.1021/bi00188a010. [DOI] [PubMed] [Google Scholar]
  137. Lyle S., Stanczak J. D., Westley J., Schwartz N. B. Sulfate-activating enzymes in normal and brachymorphic mice: evidence for a channeling defect. Biochemistry. 1995 Jan 24;34(3):940–945. doi: 10.1021/bi00003a028. [DOI] [PubMed] [Google Scholar]
  138. Lyle S., Stanczak J., Ng K., Schwartz N. B. Rat chondrosarcoma ATP sulfurylase and adenosine 5'-phosphosulfate kinase reside on a single bifunctional protein. Biochemistry. 1994 May 17;33(19):5920–5925. doi: 10.1021/bi00185a032. [DOI] [PubMed] [Google Scholar]
  139. MUDD S. H. Activation of methionine for transmethylation. VI. Enzyme-bound tripolyphosphate as an intermediate in the reaction catalyzed by the methionine-activating enzyme of Baker's yeast. J Biol Chem. 1963 Jun;238:2156–2163. [PubMed] [Google Scholar]
  140. Macris B. J., Markakis P. Transport and toxicity of sulphur dioxide in Saccharomyces cerevisiae var ellipsoideus. J Sci Food Agric. 1974 Jan;25(1):21–29. doi: 10.1002/jsfa.2740250104. [DOI] [PubMed] [Google Scholar]
  141. Mallet L., Bussereau F., Jacquet M. A 43.5 kb segment of yeast chromosome XIV, which contains MFA2, MEP2, CAP/SRV2, NAM9, FKB1/FPR1/RBP1, MOM22 and CPT1, predicts an adenosine deaminase gene and 14 new open reading frames. Yeast. 1995 Sep 30;11(12):1195–1209. doi: 10.1002/yea.320111210. [DOI] [PubMed] [Google Scholar]
  142. Maresca B., Kobayashi G. S. Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi. Microbiol Rev. 1989 Jun;53(2):186–209. doi: 10.1128/mr.53.2.186-209.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Markham G. D., DeParasis J., Gatmaitan J. The sequence of metK, the structural gene for S-adenosylmethionine synthetase in Escherichia coli. J Biol Chem. 1984 Dec 10;259(23):14505–14507. [PubMed] [Google Scholar]
  144. Marmocchi F., Lupidi G., Venardi G., Riva F. Adenosine deaminase from Saccharomyces cerevisiae: purification and characterization. Biochem Int. 1987 Mar;14(3):569–580. [PubMed] [Google Scholar]
  145. Marzluf G. A. Regulation of sulfur and nitrogen metabolism in filamentous fungi. Annu Rev Microbiol. 1993;47:31–55. doi: 10.1146/annurev.mi.47.100193.000335. [DOI] [PubMed] [Google Scholar]
  146. Masison D. C., O'Connell K. F., Baker R. E. Mutational analysis of the Saccharomyces cerevisiae general regulatory factor CP1. Nucleic Acids Res. 1993 Aug 25;21(17):4133–4141. doi: 10.1093/nar/21.17.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Masselot M., De Robichon-Szulmajster H. Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants. Mol Gen Genet. 1975 Aug 5;139(2):121–132. doi: 10.1007/BF00264692. [DOI] [PubMed] [Google Scholar]
  148. Masselot M., Surdin-Kerjan Y. Methionine biosynthesis in Saccharomyces cerevisiae. II. Gene-enzyme relationships in the sulfate assimilation pathway. Mol Gen Genet. 1977 Jul 7;154(1):23–30. doi: 10.1007/BF00265572. [DOI] [PubMed] [Google Scholar]
  149. McNabb D. S., Xing Y., Guarente L. Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev. 1995 Jan 1;9(1):47–58. doi: 10.1101/gad.9.1.47. [DOI] [PubMed] [Google Scholar]
  150. Meier P. J., Valantinas J., Hugentobler G., Rahm I. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles. Am J Physiol. 1987 Oct;253(4 Pt 1):G461–G468. doi: 10.1152/ajpgi.1987.253.4.G461. [DOI] [PubMed] [Google Scholar]
  151. Mellor J., Jiang W., Funk M., Rathjen J., Barnes C. A., Hinz T., Hegemann J. H., Philippsen P. CPF1, a yeast protein which functions in centromeres and promoters. EMBO J. 1990 Dec;9(12):4017–4026. doi: 10.1002/j.1460-2075.1990.tb07623.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Mellor J., Rathjen J., Jiang W., Barnes C. A., Dowell S. J. DNA binding of CPF1 is required for optimal centromere function but not for maintaining methionine prototrophy in yeast. Nucleic Acids Res. 1991 Jun 11;19(11):2961–2969. doi: 10.1093/nar/19.11.2961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Moerschell R. P., Hosokawa Y., Tsunasawa S., Sherman F. The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation. J Biol Chem. 1990 Nov 15;265(32):19638–19643. [PubMed] [Google Scholar]
  154. Mortimer R. K., Contopoulou C. R., King J. S. Genetic and physical maps of Saccharomyces cerevisiae, Edition 11. Yeast. 1992 Oct;8(10):817–902. doi: 10.1002/yea.320081002. [DOI] [PubMed] [Google Scholar]
  155. Mountain H. A., Byström A. S., Korch C. The general amino acid control regulates MET4, which encodes a methionine-pathway-specific transcriptional activator of Saccharomyces cerevisiae. Mol Microbiol. 1993 Jan;7(2):215–228. doi: 10.1111/j.1365-2958.1993.tb01113.x. [DOI] [PubMed] [Google Scholar]
  156. Mountain H. A., Byström A. S., Larsen J. T., Korch C. Four major transcriptional responses in the methionine/threonine biosynthetic pathway of Saccharomyces cerevisiae. Yeast. 1991 Nov;7(8):781–803. doi: 10.1002/yea.320070804. [DOI] [PubMed] [Google Scholar]
  157. Mountain H. A., Korch C. TDH2 is linked to MET3 on chromosome X of Saccharomyces cerevisiae. Yeast. 1991 Nov;7(8):873–880. doi: 10.1002/yea.320070814. [DOI] [PubMed] [Google Scholar]
  158. Muller E. G. Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J Biol Chem. 1991 May 15;266(14):9194–9202. [PubMed] [Google Scholar]
  159. Muller E. G. Thioredoxin genes in Saccharomyces cerevisiae: map positions of TRX1 and TRX2. Yeast. 1992 Feb;8(2):117–120. doi: 10.1002/yea.320080206. [DOI] [PubMed] [Google Scholar]
  160. Murguía J. R., Bellés J. M., Serrano R. A salt-sensitive 3'(2'),5'-bisphosphate nucleotidase involved in sulfate activation. Science. 1995 Jan 13;267(5195):232–234. doi: 10.1126/science.7809627. [DOI] [PubMed] [Google Scholar]
  161. Murguía J. R., Bellés J. M., Serrano R. The yeast HAL2 nucleotidase is an in vivo target of salt toxicity. J Biol Chem. 1996 Nov 15;271(46):29029–29033. doi: 10.1074/jbc.271.46.29029. [DOI] [PubMed] [Google Scholar]
  162. Murphy J. T., Spence K. D. Transport of S-adenosylmethionine in Saccharomyces cerevisiae. J Bacteriol. 1972 Feb;109(2):499–504. doi: 10.1128/jb.109.2.499-504.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Nagai S., Flavin M. Acetylhomoserine and methionine biosynthesis in Neurospora. J Biol Chem. 1966 Aug 25;241(16):3861–3863. [PubMed] [Google Scholar]
  164. Nagai S., Flavin M. Acetylhomoserine. An intermediate in the fungal biosynthesis of methionine. J Biol Chem. 1967 Sep 10;242(17):3884–3895. [PubMed] [Google Scholar]
  165. Neer E. J., Schmidt C. J., Nambudripad R., Smith T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994 Sep 22;371(6495):297–300. doi: 10.1038/371297a0. [DOI] [PubMed] [Google Scholar]
  166. Neuwald A. F., Krishnan B. R., Brikun I., Kulakauskas S., Suziedelis K., Tomcsanyi T., Leyh T. S., Berg D. E. cysQ, a gene needed for cysteine synthesis in Escherichia coli K-12 only during aerobic growth. J Bacteriol. 1992 Jan;174(2):415–425. doi: 10.1128/jb.174.2.415-425.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Neuwald A. F., York J. D., Majerus P. W. Diverse proteins homologous to inositol monophosphatase. FEBS Lett. 1991 Dec 2;294(1-2):16–18. doi: 10.1016/0014-5793(91)81332-3. [DOI] [PubMed] [Google Scholar]
  168. O'Connell K. F., Surdin-Kerjan Y., Baker R. E. Role of the Saccharomyces cerevisiae general regulatory factor CP1 in methionine biosynthetic gene transcription. Mol Cell Biol. 1995 Apr;15(4):1879–1888. doi: 10.1128/mcb.15.4.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Ohya Y., Ohsumi Y., Anraku Y. Isolation and characterization of Ca2+-sensitive mutants of Saccharomyces cerevisiae. J Gen Microbiol. 1986 Apr;132(4):979–988. doi: 10.1099/00221287-132-4-979. [DOI] [PubMed] [Google Scholar]
  170. Old I. G., Phillips S. E., Stockley P. G., Saint Girons I. Regulation of methionine biosynthesis in the Enterobacteriaceae. Prog Biophys Mol Biol. 1991;56(3):145–185. doi: 10.1016/0079-6107(91)90012-h. [DOI] [PubMed] [Google Scholar]
  171. Omura F., Fujita A., Shibano Y. Single point mutations in Met4p impair the transcriptional repression of MET genes in Saccharomyces cerevisiae. FEBS Lett. 1996 Jun 3;387(2-3):179–183. doi: 10.1016/0014-5793(96)00486-3. [DOI] [PubMed] [Google Scholar]
  172. Ono B., Heike C., Yano Y., Inoue T., Naito K., Nakagami S., Yamane A. Cloning and mapping of the CYS4 gene of Saccharomyces cerevisiae. Curr Genet. 1992 Apr;21(4-5):285–289. doi: 10.1007/BF00351684. [DOI] [PubMed] [Google Scholar]
  173. Ono B., Ishii N., Fujino S., Aoyama I. Role of hydrosulfide ions (HS-) in methylmercury resistance in Saccharomyces cerevisiae. Appl Environ Microbiol. 1991 Nov;57(11):3183–3186. doi: 10.1128/aem.57.11.3183-3186.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Ono B., Kijima K., Inoue T., Miyoshi S., Matsuda A., Shinoda S. Purification and properties of Saccharomyces cerevisiae cystathionine beta-synthase. Yeast. 1994 Mar;10(3):333–339. doi: 10.1002/yea.320100306. [DOI] [PubMed] [Google Scholar]
  175. Ono B., Naito K. The cysteine transport system of Saccharomyces cerevisiae. Yeast. 1991 Nov;7(8):849–855. doi: 10.1002/yea.320070810. [DOI] [PubMed] [Google Scholar]
  176. Ono B., Shirahige Y., Nanjoh A., Andou N., Ohue H., Ishino-Arao Y. Cysteine biosynthesis in Saccharomyces cerevisiae: mutation that confers cystathionine beta-synthase deficiency. J Bacteriol. 1988 Dec;170(12):5883–5889. doi: 10.1128/jb.170.12.5883-5889.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Ono B., Suruga T., Yamamoto M., Yamamoto S., Murata K., Kimura A., Shinoda S., Ohmori S. Cystathionine accumulation in Saccharomyces cerevisiae. J Bacteriol. 1984 Jun;158(3):860–865. doi: 10.1128/jb.158.3.860-865.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Ono B., Tanaka K., Naito K., Heike C., Shinoda S., Yamamoto S., Ohmori S., Oshima T., Toh-e A. Cloning and characterization of the CYS3 (CYI1) gene of Saccharomyces cerevisiae. J Bacteriol. 1992 May;174(10):3339–3347. doi: 10.1128/jb.174.10.3339-3347.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Ostrowski J., Barber M. J., Rueger D. C., Miller B. E., Siegel L. M., Kredich N. M. Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase. J Biol Chem. 1989 Sep 25;264(27):15796–15808. [PubMed] [Google Scholar]
  180. Ostrowski J., Wu J. Y., Rueger D. C., Miller B. E., Siegel L. M., Kredich N. M. Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B. DNA sequences of cysI and cysH and a model for the siroheme-Fe4S4 active center of sulfite reductase hemoprotein based on amino acid homology with spinach nitrite reductase. J Biol Chem. 1989 Sep 15;264(26):15726–15737. [PubMed] [Google Scholar]
  181. Ozaki H., Shiio I. Methionine biosynthesis in Brevibacterium flavum: properties and essential role of O-acetylhomoserine sulfhydrylase. J Biochem. 1982 Apr;91(4):1163–1171. doi: 10.1093/oxfordjournals.jbchem.a133799. [DOI] [PubMed] [Google Scholar]
  182. Ozcan S., Johnston M. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol. 1995 Mar;15(3):1564–1572. doi: 10.1128/mcb.15.3.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Peleman J., Boerjan W., Engler G., Seurinck J., Botterman J., Alliotte T., Van Montagu M., Inzé D. Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase. Plant Cell. 1989 Jan;1(1):81–93. doi: 10.1105/tpc.1.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Peleman J., Saito K., Cottyn B., Engler G., Seurinck J., Van Montagu M., Inzé D. Structure and expression analyses of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana. Gene. 1989 Dec 14;84(2):359–369. doi: 10.1016/0378-1119(89)90510-6. [DOI] [PubMed] [Google Scholar]
  185. Peng Z., Verma D. P. A rice HAL2-like gene encodes a Ca(2+)-sensitive 3'(2'),5'-diphosphonucleoside 3'(2')-phosphohydrolase and complements yeast met22 and Escherichia coli cysQ mutations. J Biol Chem. 1995 Dec 8;270(49):29105–29110. doi: 10.1074/jbc.270.49.29105. [DOI] [PubMed] [Google Scholar]
  186. Pilkington B. J., Rose A. H. Reactions of Saccharomyces cerevisiae and Zygosaccharomyces bailii to sulphite. J Gen Microbiol. 1988 Oct;134(10):2823–2830. doi: 10.1099/00221287-134-10-2823. [DOI] [PubMed] [Google Scholar]
  187. Prakash L., Prakash S. Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics. 1977 May;86(1):33–55. doi: 10.1093/genetics/86.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Primig M., Sockanathan S., Auer H., Nasmyth K. Anatomy of a transcription factor important for the start of the cell cycle in Saccharomyces cerevisiae. Nature. 1992 Aug 13;358(6387):593–597. doi: 10.1038/358593a0. [DOI] [PubMed] [Google Scholar]
  189. Quintero F. J., Garciadeblás B., Rodríguez-Navarro A. The SAL1 gene of Arabidopsis, encoding an enzyme with 3'(2'),5'-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell. 1996 Mar;8(3):529–537. doi: 10.1105/tpc.8.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. ROBBINS P. W., LIPMANN F. Enzymatic synthesis of adenosine-5'-phosphosulfate. J Biol Chem. 1958 Sep;233(3):686–690. [PubMed] [Google Scholar]
  191. Raymond C. K., Roberts C. J., Moore K. E., Howald I., Stevens T. H. Biogenesis of the vacuole in Saccharomyces cerevisiae. Int Rev Cytol. 1992;139:59–120. doi: 10.1016/s0074-7696(08)61410-2. [DOI] [PubMed] [Google Scholar]
  192. Robichon-Szulmajster H., Cherest H. Regulation of homoserine O-transacetylase, first step in methionine biosyntheis in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1967 Jul 21;28(2):256–262. doi: 10.1016/0006-291x(67)90438-x. [DOI] [PubMed] [Google Scholar]
  193. Roomans G. M., Kuypers G. A., Theuvenet A. P., Borst-Pauwels G. W. Kinetics of sulfate uptake by yeast. Biochim Biophys Acta. 1979 Feb 20;551(1):197–206. doi: 10.1016/0005-2736(79)90365-1. [DOI] [PubMed] [Google Scholar]
  194. Rosenthal E., Leustek T. A multifunctional Urechis caupo protein, PAPS synthetase, has both ATP sulfurylase and APS kinase activities. Gene. 1995 Nov 20;165(2):243–248. doi: 10.1016/0378-1119(95)00450-k. [DOI] [PubMed] [Google Scholar]
  195. Russel M., Model P., Holmgren A. Thioredoxin or glutaredoxin in Escherichia coli is essential for sulfate reduction but not for deoxyribonucleotide synthesis. J Bacteriol. 1990 Apr;172(4):1923–1929. doi: 10.1128/jb.172.4.1923-1929.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Sangsoda S., Cherest H., Surdin-Kerjan Y. The expression of the MET25 gene of Saccharomyces cerevisiae is regulated transcriptionally. Mol Gen Genet. 1985;200(3):407–414. doi: 10.1007/BF00425724. [DOI] [PubMed] [Google Scholar]
  197. Satishchandran C., Taylor J. C., Markham G. D. Isozymes of S-adenosylmethionine synthetase are encoded by tandemly duplicated genes in Escherichia coli. Mol Microbiol. 1993 Aug;9(4):835–846. doi: 10.1111/j.1365-2958.1993.tb01742.x. [DOI] [PubMed] [Google Scholar]
  198. Satishchandran C., Taylor J. C., Markham G. D. Novel Escherichia coli K-12 mutants impaired in S-adenosylmethionine synthesis. J Bacteriol. 1990 Aug;172(8):4489–4496. doi: 10.1128/jb.172.8.4489-4496.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Schirch V., Strong W. B. Interaction of folylpolyglutamates with enzymes in one-carbon metabolism. Arch Biochem Biophys. 1989 Mar;269(2):371–380. doi: 10.1016/0003-9861(89)90120-3. [DOI] [PubMed] [Google Scholar]
  200. Schriek U., Schwenn J. D. Properties of the purified APS-kinase from Escherichia coli and Saccharomyces cerevisiae. Arch Microbiol. 1986 Jun;145(1):32–38. doi: 10.1007/BF00413024. [DOI] [PubMed] [Google Scholar]
  201. Schwedock J. S., Liu C., Leyh T. S., Long S. R. Rhizobium meliloti NodP and NodQ form a multifunctional sulfate-activating complex requiring GTP for activity. J Bacteriol. 1994 Nov;176(22):7055–7064. doi: 10.1128/jb.176.22.7055-7064.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Schwedock J. S., Long S. R. Rhizobium meliloti genes involved in sulfate activation: the two copies of nodPQ and a new locus, saa. Genetics. 1992 Dec;132(4):899–909. doi: 10.1093/genetics/132.4.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Schwedock J., Long S. R. ATP sulphurylase activity of the nodP and nodQ gene products of Rhizobium meliloti. Nature. 1990 Dec 13;348(6302):644–647. doi: 10.1038/348644a0. [DOI] [PubMed] [Google Scholar]
  204. Schwedock J., Long S. R. Nucleotide sequence and protein products of two new nodulation genes of Rhizobium meliloti, nodP and nodQ. Mol Plant Microbe Interact. 1989 Jul-Aug;2(4):181–194. doi: 10.1094/mpmi-2-181. [DOI] [PubMed] [Google Scholar]
  205. Schwencke J., De Robichon-Szulmajster H. The transport of S-adenosyl-L-methionine in isolated yeast vacuoles and spheroplasts. Eur J Biochem. 1976 May 17;65(1):49–60. doi: 10.1111/j.1432-1033.1976.tb10388.x. [DOI] [PubMed] [Google Scholar]
  206. Schwenn J. D., Krone F. A., Husmann K. Yeast PAPS reductase: properties and requirements of the purified enzyme. Arch Microbiol. 1988;150(4):313–319. doi: 10.1007/BF00408300. [DOI] [PubMed] [Google Scholar]
  207. Seki Y., Sogawa N., Ishimoto M. Siroheme as an active catalyst in sulfite reduction. J Biochem. 1981 Nov;90(5):1487–1492. doi: 10.1093/oxfordjournals.jbchem.a133615. [DOI] [PubMed] [Google Scholar]
  208. Siegel L. M., Davis P. S. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein: subunit structure and dissociation into hemoprotein and flavoprotein components. J Biol Chem. 1974 Mar 10;249(5):1587–1598. [PubMed] [Google Scholar]
  209. Singh A., Sherman F. Association of methionine requirement with methyl mercury resistant mutants of yeast. Nature. 1974 Jan 25;247(5438):227–229. doi: 10.1038/247227a0. [DOI] [PubMed] [Google Scholar]
  210. Singh A., Sherman F. Characteristics and relationships of mercury-resistant mutants and methionine auxotrophs of yeast. J Bacteriol. 1974 Jun;118(3):911–918. doi: 10.1128/jb.118.3.911-918.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Slany R. K., Bösl M., Crain P. F., Kersten H. A new function of S-adenosylmethionine: the ribosyl moiety of AdoMet is the precursor of the cyclopentenediol moiety of the tRNA wobble base queuine. Biochemistry. 1993 Aug 3;32(30):7811–7817. doi: 10.1021/bi00081a028. [DOI] [PubMed] [Google Scholar]
  212. Slekar K. H., Kosman D. J., Culotta V. C. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem. 1996 Nov 15;271(46):28831–28836. doi: 10.1074/jbc.271.46.28831. [DOI] [PubMed] [Google Scholar]
  213. Smith F. W., Hawkesford M. J., Prosser I. M., Clarkson D. T. Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane. Mol Gen Genet. 1995 Jun 25;247(6):709–715. doi: 10.1007/BF00290402. [DOI] [PubMed] [Google Scholar]
  214. Smith I. K. Characterization of sulfate transport in cultured tobacco cells. Plant Physiol. 1976 Sep;58(3):358–362. doi: 10.1104/pp.58.3.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Spence K. D. Mutation of Saccharomyces cerevisiae preventing uptake of S-adenosylmethionine. J Bacteriol. 1971 May;106(2):325–330. doi: 10.1128/jb.106.2.325-330.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Stoner G. L., Eisenberg M. A. Purification and properties of 7, 8-diaminopelargonic acid aminotransferase. J Biol Chem. 1975 Jun 10;250(11):4029–4036. [PubMed] [Google Scholar]
  217. Takusagawa F., Kamitori S., Markham G. D. Structure and function of S-adenosylmethionine synthetase: crystal structures of S-adenosylmethionine synthetase with ADP, BrADP, and PPi at 28 angstroms resolution. Biochemistry. 1996 Feb 27;35(8):2586–2596. doi: 10.1021/bi952604z. [DOI] [PubMed] [Google Scholar]
  218. Takusagawa F., Kamitori S., Misaki S., Markham G. D. Crystal structure of S-adenosylmethionine synthetase. J Biol Chem. 1996 Jan 5;271(1):136–147. [PubMed] [Google Scholar]
  219. Theologis A. One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell. 1992 Jul 24;70(2):181–184. doi: 10.1016/0092-8674(92)90093-r. [DOI] [PubMed] [Google Scholar]
  220. Thomas D., Barbey R., Henry D., Surdin-Kerjan Y. Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J Gen Microbiol. 1992 Oct;138(10):2021–2028. doi: 10.1099/00221287-138-10-2021. [DOI] [PubMed] [Google Scholar]
  221. Thomas D., Barbey R., Surdin-Kerjan Y. Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3'-phosphoadenylylsulfate reductase structural gene. J Biol Chem. 1990 Sep 15;265(26):15518–15524. [PubMed] [Google Scholar]
  222. Thomas D., Cherest H., Surdin-Kerjan Y. Elements involved in S-adenosylmethionine-mediated regulation of the Saccharomyces cerevisiae MET25 gene. Mol Cell Biol. 1989 Aug;9(8):3292–3298. doi: 10.1128/mcb.9.8.3292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Thomas D., Cherest H., Surdin-Kerjan Y. Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to a nutritional requirement for organic sulfur. EMBO J. 1991 Mar;10(3):547–553. doi: 10.1002/j.1460-2075.1991.tb07981.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Thomas D., Jacquemin I., Surdin-Kerjan Y. MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Apr;12(4):1719–1727. doi: 10.1128/mcb.12.4.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Thomas D., Kuras L., Barbey R., Cherest H., Blaiseau P. L., Surdin-Kerjan Y. Met30p, a yeast transcriptional inhibitor that responds to S-adenosylmethionine, is an essential protein with WD40 repeats. Mol Cell Biol. 1995 Dec;15(12):6526–6534. doi: 10.1128/mcb.15.12.6526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Thomas D., Rothstein R., Rosenberg N., Surdin-Kerjan Y. SAM2 encodes the second methionine S-adenosyl transferase in Saccharomyces cerevisiae: physiology and regulation of both enzymes. Mol Cell Biol. 1988 Dec;8(12):5132–5139. doi: 10.1128/mcb.8.12.5132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Thomas D., Surdin-Kerjan Y. SAM1, the structural gene for one of the S-adenosylmethionine synthetases in Saccharomyces cerevisiae. Sequence and expression. J Biol Chem. 1987 Dec 5;262(34):16704–16709. [PubMed] [Google Scholar]
  228. Thomas D., Surdin-Kerjan Y. The synthesis of the two S-adenosyl-methionine synthetases is differently regulated in Saccharomyces cerevisiae. Mol Gen Genet. 1991 Apr;226(1-2):224–232. doi: 10.1007/BF00273607. [DOI] [PubMed] [Google Scholar]
  229. Tweedie J. W., Segel I. H. Adenosine triphosphate sulfurylase from Penicillium chrysogenum. II. Physical, kinetic, and regulatory properties. J Biol Chem. 1971 Apr 25;246(8):2438–2446. [PubMed] [Google Scholar]
  230. Uria-Nickelsen M. R., Leadbetter E. R., Godchaux W., 3rd Sulfonate-sulfur assimilation by yeasts resembles that of bacteria. FEMS Microbiol Lett. 1993 Nov 15;114(1):73–77. doi: 10.1016/0378-1097(93)90144-q. [DOI] [PubMed] [Google Scholar]
  231. WILSON L. G., ASAHI T., BANDURSKI R. S. Yeast sulfate-reducing system. I. Reduction of sulfate to sulfite. J Biol Chem. 1961 Jun;236:1822–1829. [PubMed] [Google Scholar]
  232. Wada Y., Kitamoto K., Kanbe T., Tanaka K., Anraku Y. The SLP1 gene of Saccharomyces cerevisiae is essential for vacuolar morphogenesis and function. Mol Cell Biol. 1990 May;10(5):2214–2223. doi: 10.1128/mcb.10.5.2214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Wada Y., Ohsumi Y., Anraku Y. Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. I. Isolation and characterization of two classes of vam mutants. J Biol Chem. 1992 Sep 15;267(26):18665–18670. [PubMed] [Google Scholar]
  234. Wagner S., Green M. R. HTLV-I Tax protein stimulation of DNA binding of bZIP proteins by enhancing dimerization. Science. 1993 Oct 15;262(5132):395–399. doi: 10.1126/science.8211160. [DOI] [PubMed] [Google Scholar]
  235. Warren M. J., Bolt E. L., Roessner C. A., Scott A. I., Spencer J. B., Woodcock S. C. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem J. 1994 Sep 15;302(Pt 3):837–844. doi: 10.1042/bj3020837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Wiame J. M., Grenson M., Arst H. N., Jr Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol. 1985;26:1–88. doi: 10.1016/s0065-2911(08)60394-x. [DOI] [PubMed] [Google Scholar]
  237. Worsey M. J., Williams P. A. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol. 1975 Oct;124(1):7–13. doi: 10.1128/jb.124.1.7-13.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Xu X., Wightman J. D., Geller B. L., Avram D., Bakalinsky A. T. Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr Genet. 1994 Jun;25(6):488–496. doi: 10.1007/BF00351667. [DOI] [PubMed] [Google Scholar]
  239. Yamagata S., D'Andrea R. J., Fujisaki S., Isaji M., Nakamura K. Cloning and bacterial expression of the CYS3 gene encoding cystathionine gamma-lyase of Saccharomyces cerevisiae and the physicochemical and enzymatic properties of the protein. J Bacteriol. 1993 Aug;175(15):4800–4808. doi: 10.1128/jb.175.15.4800-4808.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Yamagata S. O-Acetylserine and O-acetylhomoserine sulfhydrylase of yeast. Subunit structure. J Biochem. 1976 Oct;80(4):787–797. doi: 10.1093/oxfordjournals.jbchem.a131339. [DOI] [PubMed] [Google Scholar]
  241. Yamagata S. Partial purification and some properties of homoserine O-acetyltransferase of a methionine auxotroph of Saccharomyces cerevisiae. J Bacteriol. 1987 Aug;169(8):3458–3463. doi: 10.1128/jb.169.8.3458-3463.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Yamagata S., Takeshima K. O-Acetylserine and O-acetylhomoserine sulfhydrylase of yeast. Further purification and characterization as a pyridoxal enzyme. J Biochem. 1976 Oct;80(4):777–785. doi: 10.1093/oxfordjournals.jbchem.a131338. [DOI] [PubMed] [Google Scholar]
  243. Yoshimoto A., Sato R. Studies on yeast sulfite reductase. I. Purification and characterization. Biochim Biophys Acta. 1968 Apr 2;153(3):555–575. doi: 10.1016/0005-2728(68)90185-0. [DOI] [PubMed] [Google Scholar]
  244. Young L. J., Siegel L. M. Superoxidized states of Escherichia coli sulfite reductase heme protein subunit. Biochemistry. 1988 Aug 9;27(16):5984–5990. doi: 10.1021/bi00416a023. [DOI] [PubMed] [Google Scholar]
  245. Zhou D., White R. H. Transsulfuration in archaebacteria. J Bacteriol. 1991 May;173(10):3250–3251. doi: 10.1128/jb.173.10.3250-3251.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiology and Molecular Biology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES