Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Oct;128(1):21–27. doi: 10.1128/jb.128.1.21-27.1976

Effect of cerulenin on the growth and differentiation of Dictyostelium discoideum.

K Chance, S Hemmingsen, G Weeks
PMCID: PMC232821  PMID: 988014

Abstract

The growth of Dictyostelium discoideum Ax-2 was inhibited completely by cerulenin at a concentration of 5 mug/ml. This inhibition of growth was found to be due to the inhibition of fatty acid synthesis. Acetate incorporation into a long-chain fatty acid was inhibited completely by cerulenin, and the growth inhibition could be reversed by inclusion of certain saturated fatty acids in the medium. Unsaturated fatty acids and sterols failed to reverse the inhibitory effect. The fatty acid and sterol compositions of cerulenin-treated cells were determined to establish whether the drug could be used to manipulate the organism's lipid composition. Only relatively small manipulations were obtained under the conditions employed in this study. Cerulenin inhibited differentiation but only at high concentrations (150 mug/ml). This inhibition could be reversed by palmitic acid, suggesting that the prime cause of the inhibition was an inhibition of fatty acid synthesis. Thus, it appears that continued fatty acid synthesis is required for the cellular process of differentiation in D. discoideum.

Full text

PDF
27

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cronan J. E., Jr, Gelmann E. P. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev. 1975 Sep;39(3):232–256. doi: 10.1128/br.39.3.232-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. D'Agnolo G., Rosenfeld I. S., Awaya J., Omura S., Vagelos P. R. Inhibition of fatty acid synthesis by the antibiotic cerulenin. Specific inactivation of beta-ketoacyl-acyl carrier protein synthetase. Biochim Biophys Acta. 1973 Nov 29;326(2):155–156. doi: 10.1016/0005-2760(73)90241-5. [DOI] [PubMed] [Google Scholar]
  3. DAVIDOFF F., KORN E. D. FATTY ACID AND PHOSPHOLIPID COMPOSITION OF THE CELLULAR SLIME MOLD, DICTYOSTELIUM DISCOIDEUM. THE OCCURRENCE OF PREVIOUSLY UNDESCRIBED FATTY ACIDS. J Biol Chem. 1963 Oct;238:3199–3209. [PubMed] [Google Scholar]
  4. DAVIDOFF F., KORN E. D. THE BIOSYNTHESIS OF FATTY ACIDS IN THE CELLULAR SLIME MOLD, DICTYOSTELIUM DISCOIDEUM. J Biol Chem. 1963 Oct;238:3210–3215. [PubMed] [Google Scholar]
  5. Ellingson J. S., Telser A., Sussman M. Regulation of functionally related enzymes during alternative developmental programs. Biochim Biophys Acta. 1971 Aug 19;244(2):388–395. doi: 10.1016/0304-4165(71)90241-8. [DOI] [PubMed] [Google Scholar]
  6. Ellouz R., Lenfant M. Biosynthèse de la chaîne latérale éthyle du stigmastanol et du stigmastèn-22,01-3beta du myxomycète Dictyostelium discoïdeum. Eur J Biochem. 1971 Dec 10;23(3):544–550. doi: 10.1111/j.1432-1033.1971.tb01652.x. [DOI] [PubMed] [Google Scholar]
  7. Farías R. N., Bloj B., Morero R. D., Siñeriz F., Trucco R. E. Regulation of allosteric membrane-bound enzymes through changes in membrane lipid compostition. Biochim Biophys Acta. 1975 Jun 30;415(2):231–251. doi: 10.1016/0304-4157(75)90003-9. [DOI] [PubMed] [Google Scholar]
  8. Ferguson K. A., Glaser M., Bayer W. H., Vagelos P. R. Alteration of fatty acid composition of LM cells by lipid supplementation and temperature. Biochemistry. 1975 Jan 14;14(1):146–151. doi: 10.1021/bi00672a025. [DOI] [PubMed] [Google Scholar]
  9. Glaser M., Ferguson K. A., Vagelos P. R. Manipulation of the phospholipid composition of tissue culture cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4072–4076. doi: 10.1073/pnas.71.10.4072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldberg I., Walker J. R., Bloch K. Inhibition of lipid synthesis in Escherichia coli cells by the antibiotic cerulenin. Antimicrob Agents Chemother. 1973 May;3(5):549–554. doi: 10.1128/aac.3.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HEFTMANN E., WRIGHT B. E., LIDDEL G. U. The isolation of Delta22-stigmasten-3beta-ol from Dictyostelium discoideum. Arch Biochem Biophys. 1960 Dec;91:266–270. doi: 10.1016/0003-9861(60)90500-2. [DOI] [PubMed] [Google Scholar]
  12. Henry S. A., Keith A. D. Saturated fatty acid requirer of Neurospora crassa. J Bacteriol. 1971 Apr;106(1):174–182. doi: 10.1128/jb.106.1.174-182.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hirschberg E., Ceccarini C., Osnos M., Carchman R. Effects of inhibitors of nucleic acid and protein synthesis on growth and aggregation of the cellular slime mold Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1968 Sep;61(1):316–323. doi: 10.1073/pnas.61.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keith A. D., Resnick M. R., Haley A. B. Fatty acid desaturase mutants of Saccharomyces cerevisiae. J Bacteriol. 1969 May;98(2):415–420. doi: 10.1128/jb.98.2.415-420.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lees A. M., Korn E. D. Metabolism of unsaturated fatty acids in protozoa. Biochemistry. 1966 May;5(5):1475–1481. doi: 10.1021/bi00869a005. [DOI] [PubMed] [Google Scholar]
  17. McElhaney R. N., Tourtellotte M. E. Mycoplasma membrane lipids: variations in fatty acid composition. Science. 1969 Apr 25;164(3878):433–434. doi: 10.1126/science.164.3878.433. [DOI] [PubMed] [Google Scholar]
  18. Nomura S., Horiuchi T., Omura S., Hata T. The action mechanism of cerulenin. I. Effect of cerulenin on sterol and fatty acid biosynthesis in yeast. J Biochem. 1972 May;71(5):783–796. doi: 10.1093/oxfordjournals.jbchem.a129827. [DOI] [PubMed] [Google Scholar]
  19. Ono T., Kesado T., Awaya J., Omura S. Target of inhibition by the anti-lipogenic antibiotic cerulenin of sterol synthesis in yeast. Biochem Biophys Res Commun. 1974 Apr 23;57(4):1119–1124. doi: 10.1016/0006-291x(74)90812-2. [DOI] [PubMed] [Google Scholar]
  20. Vance D., Goldberg I., Mitsuhashi O., Bloch K. Inhibition of fatty acid synthetases by the antibiotic cerulenin. Biochem Biophys Res Commun. 1972 Aug 7;48(3):649–656. doi: 10.1016/0006-291x(72)90397-x. [DOI] [PubMed] [Google Scholar]
  21. Weeks C., Weeks G. Cell surface changes during the differentiation of Dictyostelium discoideum. Interaction of cells with Concanavalin A. Exp Cell Res. 1975 May;92(2):372–382. doi: 10.1016/0014-4827(75)90391-2. [DOI] [PubMed] [Google Scholar]
  22. Weeks G. Agglutination of growing and differentiating cells of Dictyostelium discoideum by concanavalin A. Exp Cell Res. 1973 Feb;76(2):467–470. doi: 10.1016/0014-4827(73)90406-0. [DOI] [PubMed] [Google Scholar]
  23. Wille W., Eisenstadt E., Willecke K. Inhibition of de novo fatty acid synthesis by the antibiotic cerulenin in Bacillus subtilis: effects on citrate-Mg2+ transport and synthesis of macromolecules. Antimicrob Agents Chemother. 1975 Sep;8(3):231–237. doi: 10.1128/aac.8.3.231. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES