Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Oct;128(1):212–220. doi: 10.1128/jb.128.1.212-220.1976

Restriction enzymes do not play a significant role in Haemophilus homospecific or heterospecific transformation.

J H Stuy
PMCID: PMC232845  PMID: 185196

Abstract

Competent Haemophilus influenzae Rd recipients, either as phage HP1 restricting (r+) or nonrestricting (r-) nonlysogens or defective lysogens, were exposed to deoxyribonucleic acids from various wild-type phage HP1 lysogenic H. influenzae serotype strains (non-encapsulated derivatives of serotypes a,b, c, d, and e), to DNA from lysogenic Haemophilus parahaemolyticus, and to DNA from modified and nonmodified phage HP1. Transformation of antibiotic resistance markers and of prophage markers in homospecific crosses was observed to be unaffected by the recipient restriction phenotype, whereas the transfection response was much reduced in r+ recipients. Heterospecific transformation of prophage markers was reduced by only 80 to 90%, whereas antibiotic resistance marker transformation was 1,000 to 10,000 times lower. Heterspecific transfection was at least 100 times lower than homospecific transfection in both r+ and r- recipients. The general conclusion is that neither class I nor class II restriction enzymes affect significantly the transformation efficiency in homospecific and heterospecific crosses. The efficiency of heterospecific transformation may depend mainly on the deoxyribonucleic acid homology in the genetic marker region.

Full text

PDF
214

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER H. E., LEIDY G. Determination of inherited traits of H. influenzae by desoxyribonucleic acid fractions isolated from type-specific cells. J Exp Med. 1951 Apr 1;93(4):345–359. doi: 10.1084/jem.93.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnhart B. J., Cox S. H. Radiation sensitivity of Haemophilus influenzae: a composite response. J Bacteriol. 1970 Jul;103(1):9–15. doi: 10.1128/jb.103.1.9-15.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beattie K. L., Setlow J. K. Transformation between Haemophilus influenzae and Haemophilus parainfluenzae. J Bacteriol. 1970 Oct;104(1):390–400. doi: 10.1128/jb.104.1.390-400.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boling M. E., Allison D. P., Setlow J. K. Bacteriophage of Haemophilus influenzae. 3. Morphology, DNA homology, and immunity properties of HPlcl, S2, and the defective bacteriophage from strain Rd. J Virol. 1973 Apr;11(4):585–591. doi: 10.1128/jvi.11.4.585-591.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garfin D. E., Goodman H. M. Nucleotide sequences at the cleavage sites of two restriction endonucleases from Hemophilus parainfluenzae. Biochem Biophys Res Commun. 1974 Jul 10;59(1):108–116. doi: 10.1016/s0006-291x(74)80181-6. [DOI] [PubMed] [Google Scholar]
  6. Glover S. W., Piekarowicz A. Host specificity of DNA in Haemophilus influenzae: restriction and modification in strain Rd. Biochem Biophys Res Commun. 1972 Feb 25;46(4):1610–1617. doi: 10.1016/0006-291x(72)90793-0. [DOI] [PubMed] [Google Scholar]
  7. Gromkova R., Bendler J., Goodgal S. Restriction and modification of bacteriophage S2 in Haemophilus influenzae. J Bacteriol. 1973 Jun;114(3):1151–1157. doi: 10.1128/jb.114.3.1151-1157.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gromkova R., Goodgal S. H. Action of haemophilus endodeoxyribonuclease on biologically active deoxyribonucleic acid. J Bacteriol. 1972 Mar;109(3):987–992. doi: 10.1128/jb.109.3.987-992.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guild W. R., Shoemaker N. B. Intracellular competition for a mismatch recogition system and marker-specific rescue of transforming DNA from inactivation by ultraviolet irradiation. Mol Gen Genet. 1974;128(4):291–300. doi: 10.1007/BF00268517. [DOI] [PubMed] [Google Scholar]
  10. HARM W., RUPERT C. S. INFECTION OF TRANSFORMABLE CELLS OF HAEMOPHILUS INFLUENZAE BY BACTERIOPHAGE AND BACTERIOPHAGE DNA. Z Vererbungsl. 1963 Dec 30;94:336–348. doi: 10.1007/BF00897593. [DOI] [PubMed] [Google Scholar]
  11. Kelly T. J., Jr, Smith H. O. A restriction enzyme from Hemophilus influenzae. II. J Mol Biol. 1970 Jul 28;51(2):393–409. doi: 10.1016/0022-2836(70)90150-6. [DOI] [PubMed] [Google Scholar]
  12. Landy A., Ruedisueli E., Robinson L., Foeller C., Ross W. Digestion of deoxyribonucleic acids from bacteriophage T7, lambda, and phi 80h with site-specific nucleases from Hemophilus influenzae strain Rc and strain Rd. Biochemistry. 1974 May 7;13(10):2134–2142. doi: 10.1021/bi00707a022. [DOI] [PubMed] [Google Scholar]
  13. NICKEL L., GOODGAL S. H. EFFECT OF INTERSPECIFIC TRANSFORMATION ON LINKAGE RELATIONSHIPS OF MARKERS IN HAEMOPHILUS INFLUENZAE AND HAEMOPHILUS PARAINFLUENZAE. J Bacteriol. 1964 Dec;88:1538–1544. doi: 10.1128/jb.88.6.1538-1544.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Newman C. M., Stuy J. H. Fate of bacteriophage lambda DNA after adsorption by Haemophilus influenzae. J Gen Microbiol. 1971 Feb;65(2):153–159. doi: 10.1099/00221287-65-2-153. [DOI] [PubMed] [Google Scholar]
  15. Notani N. K., Setlow J. K. Mechanism of bacterial transformation and transfection. Prog Nucleic Acid Res Mol Biol. 1974;14(0):39–100. doi: 10.1016/s0079-6603(08)60205-6. [DOI] [PubMed] [Google Scholar]
  16. Notani N. K., Setlow J. K. Molecular events accompanying the fixation of genetic information in Haemophilus heterospecific transformation. J Bacteriol. 1972 Nov;112(2):751–760. doi: 10.1128/jb.112.2.751-760.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Old R., Murray K., Boizes G. Recognition sequence of restriction endonuclease III from Hemophilus influenzae. J Mol Biol. 1975 Feb 25;92(2):331–339. doi: 10.1016/0022-2836(75)90232-6. [DOI] [PubMed] [Google Scholar]
  18. Piekarowicz A., Glover S. W. Host specificity of DNA in Haemophilus influenzae: the two restriction and modification systems in strain Ra. Mol Gen Genet. 1972;116(1):11–25. doi: 10.1007/BF00334255. [DOI] [PubMed] [Google Scholar]
  19. Piekarowicz A., Kalinowska J. Host specificity of DNA in Haemophilus influenzae: similarity between host-specificity types of Haemophilus influenzae Re and Rf. J Gen Microbiol. 1974 Apr;81(2):405–411. doi: 10.1099/00221287-81-2-405. [DOI] [PubMed] [Google Scholar]
  20. Piekarowicz A., Kauc L., Glover S. W. Host specificity of DNA in Haemophilus influenzae: the restriction and modification systems in strains Rb and Rf. J Gen Microbiol. 1974 Apr;81(2):391–403. doi: 10.1099/00221287-81-2-391. [DOI] [PubMed] [Google Scholar]
  21. Roszczyk E., Goodgal S. Methylase activities from Haemophilus influenzae that protect Haemophilus parainfluenzae transforming deoxyribonucleic acid from inactivation by Haemophilus influenzae endonuclease R. J Bacteriol. 1975 Jul;123(1):287–293. doi: 10.1128/jb.123.1.287-293.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Roy P. H., Smith H. O. DNA methylases of Hemophilus influenzae Rd. I. Purification and properties. J Mol Biol. 1973 Dec 25;81(4):427–444. doi: 10.1016/0022-2836(73)90515-9. [DOI] [PubMed] [Google Scholar]
  23. Roy P. H., Smith H. O. DNA methylases of Hemophilus influenzae Rd. II. Partial recognition site base sequences. J Mol Biol. 1973 Dec 25;81(4):445–459. doi: 10.1016/0022-2836(73)90516-0. [DOI] [PubMed] [Google Scholar]
  24. SCHAEFFER P. Interspecific reactions in bacterial transformation. Symp Soc Exp Biol. 1958;12:60–74. [PubMed] [Google Scholar]
  25. STUY J. H. Transformability of Haemophilus influenzae. J Gen Microbiol. 1962 Nov;29:537–549. doi: 10.1099/00221287-29-3-537. [DOI] [PubMed] [Google Scholar]
  26. Setlow J. K., Boling M. E., Allison D. P., Beattie K. L. Relationship between prophage induction and transformation in Haemophilus influenzae. J Bacteriol. 1973 Jul;115(1):153–161. doi: 10.1128/jb.115.1.153-161.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Setlow J. K., Randolph M. L., Boling M. E., Mattingly A., Price G., Gordon M. P. Repair of DNA in Haemophilus influenzae. II. Excision, repair of single-strand breaks, defects in transformation, and host cell modification in UV-sensitive mutants. Cold Spring Harb Symp Quant Biol. 1968;33:209–218. doi: 10.1101/sqb.1968.033.01.024. [DOI] [PubMed] [Google Scholar]
  28. Sharp P. A., Sugden B., Sambrook J. Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose--ethidium bromide electrophoresis. Biochemistry. 1973 Jul 31;12(16):3055–3063. doi: 10.1021/bi00740a018. [DOI] [PubMed] [Google Scholar]
  29. Smith H. O., Wilcox K. W. A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J Mol Biol. 1970 Jul 28;51(2):379–391. doi: 10.1016/0022-2836(70)90149-x. [DOI] [PubMed] [Google Scholar]
  30. Stachura I., Mckinley F. W., Leidy G., Alexander H. E. Incomplete bacteriophage-like particles in ultraviolet-irradiated haemophilus. J Bacteriol. 1969 May;98(2):818–820. doi: 10.1128/jb.98.2.818-820.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Steinhart W. L., Herriott R. M. Genetic integration in the heterospecific transformation of Haemophilus influenzae cells by Haemophilus parainfluenzae deoxyribonucleic acid. J Bacteriol. 1968 Nov;96(5):1725–1731. doi: 10.1128/jb.96.5.1725-1731.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stuy J. H. Acid-soluble breakdown of homologous deoxyribbonucleic acid adsorbed by Haemophilus influenzae: its biological significance. J Bacteriol. 1974 Nov;120(2):917–922. doi: 10.1128/jb.120.2.917-922.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stuy J. H. Origin and direction of Haemophilus bacteriophage HP1 DNA replication. J Virol. 1974 Mar;13(3):757–759. doi: 10.1128/jvi.13.3.757-759.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stuy J. H. Prophage mapping by transformation. Virology. 1969 Aug;38(4):567–572. doi: 10.1016/0042-6822(69)90177-9. [DOI] [PubMed] [Google Scholar]
  35. Trautner T. A., Pawlek B., Bron S., Anagnostopoulos C. Restriction and modification in B. subtilis. Biological aspects. Mol Gen Genet. 1974;131(3):181–191. doi: 10.1007/BF00267958. [DOI] [PubMed] [Google Scholar]
  36. WILLIAMS J. N., Jr, LAQUEUR G. L. RESPONSE OF LIVER NUCLEIC ACIDS AND LIPIDS IN RATS FED CYCAS CIRCINALIS L. ENDOSPERM OR CYCASIN. Proc Soc Exp Biol Med. 1965 Jan;118:1–4. doi: 10.3181/00379727-118-29740. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES