Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Jul;127(1):91–97. doi: 10.1128/jb.127.1.91-97.1976

Natural and altered induction of the L-fucose catabolic enzymes in Klebsiella aerogenes.

E J Saint Martin, R P Mortlock
PMCID: PMC233037  PMID: 179982

Abstract

Mutants of Klebsiella aerogenes W70 were isolated that had gained the ability to utilize the uncommon pentose D-arabinose as their sole source of carbon and energy. In contrast to the D-arabinose-negative, parent strain, these mutants were found to be either constitutive for certain enzymes of the L-fucose catabolic pathway or inducible for such enzymes when incubated in the presence of D-arabinose. The mutants used L-fucose isomerase to convert D-arabinose to D-ribulose, which is an intermediate and inducer of the ribitol catabolic pathway. The D-ribulokinase of the ribitol pathway was then induced. This enzyme catalyzed the phosphorylation of D-ribulose at the 5-carbon position. Mutants that were negative for D-ribulokinase could still dissimilate D-arabinose slowly by using all three enzymes, the isomerase, kinase, and aldolase, of the L-fucose pathway. Using condition negative mutants, we were able to demonstrate that the natural induction of the L-fucose pathway enzymes by L-fucose required the activity of a functional L-fucose isomerase and a functional L-fuculokinase but not an L-fuculose-1-phosphate aldolase. A metabolic intermediate, L-fuculose-1-phosphate, was thereby shown to be a probable inducer of at least the isomerase and kinase of the L-fucose catabolic pathway. Similar experiments, with D-arabinose-positive mutants, which were induced for the L-fucose pathway enzymes upon incubation with D-arabinose, revealed that the activities of the L-fucose isomerase and the L-fuculokinase were also required for the induction of the L-fucose enzymes. These D-arabinose-positive mutants apparently produced an altered regulatory protein that accepted both L-fuculose-1-phosphate and D-ribulose-1-phosphate as inducers. Examination of constitutive mutants revealed that L-fucose isomerase and L-fuculokinase were both synthesized constitutively, with the aldolase apparently under separate control.

Full text

PDF
92

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON R. L., WOOD W. A. Purification and properties of L-xylulokinase. J Biol Chem. 1962 Apr;237:1029–1033. [PubMed] [Google Scholar]
  2. CHIU T. H., FEINGOLD D. S. THE PURIFICATION AND PROPERTIES OF L-RHAMNULOKINASE. Biochim Biophys Acta. 1964 Dec 23;92:489–497. doi: 10.1016/0926-6569(64)90009-4. [DOI] [PubMed] [Google Scholar]
  3. Charnetzky W. T., Mortlock R. P. Close genetic linkage of the determinants of the ribitol and D-arabitol catabolic pathways in Klebsiella aerogenes. J Bacteriol. 1974 Jul;119(1):176–182. doi: 10.1128/jb.119.1.176-182.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Charnetzky W. T., Mortlock R. P. Ribitol catabolic pathway in Klebsiella aerogenes. J Bacteriol. 1974 Jul;119(1):162–169. doi: 10.1128/jb.119.1.162-169.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GHALAMBOR M. A., HEATH E. C. The metabolism of L-fucose. II. The enzymatic cleavage of L-fuculose 1-phosphate. J Biol Chem. 1962 Aug;237:2427–2433. [PubMed] [Google Scholar]
  6. HEATH E. C., GHALAMBOR M. A. The metabolism of L-fucose. I. The purification and properties of L-fuculose kinase. J Biol Chem. 1962 Aug;237:2423–2426. [PubMed] [Google Scholar]
  7. Hegeman G. D., Rosenberg S. L. The evolution of bacterial enzyme systems. Annu Rev Microbiol. 1970;24:429–462. doi: 10.1146/annurev.mi.24.100170.002241. [DOI] [PubMed] [Google Scholar]
  8. Leblanc D. J., Mortlock R. P. The metabolism of D-arabinose: alternate kinases for the phosphorylation of D-ribulose in Escherichia coli and Aerobacter aerogenes. Arch Biochem Biophys. 1972 Jun;150(2):774–781. doi: 10.1016/0003-9861(72)90097-5. [DOI] [PubMed] [Google Scholar]
  9. Lim R., Cohen S. S. D-phosphoarabinoisomerase and D-ribulokinase in Escherichia coli. J Biol Chem. 1966 Oct 10;241(19):4304–4315. [PubMed] [Google Scholar]
  10. Oliver E. J., Mortlock R. P. Growth of Aerobacter aerogenes on D-arabinose: origin of the enzyme activities. J Bacteriol. 1971 Oct;108(1):287–292. doi: 10.1128/jb.108.1.287-292.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES