Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 May;126(2):999–1001. doi: 10.1128/jb.126.2.999-1001.1976

Altered deoxyribonucleotide pools in P2 eductants of Escherichia coli K-12 due to deletion of the dcd gene.

J Neuhard, E Thomassen
PMCID: PMC233240  PMID: 177407

Abstract

Deletion of the Escherichia coli K-12 chromosome associated with P2 mediated education extend through the structural gene for uridine kinase, udk, and the dcd gene encoding 2'-deoxycytidine 5'-triphosphate deaminase. The lack of uridine kinase makes a positive selection possible for these strains. Due to the dcd mutation, P2 eductants show large alterations in their deoxyribonucleoside triphosphate pools.

Full text

PDF
1001

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beacham I. R., Pritchard R. H. The role of nucleoside phosphorylases in the degradation of deoxyribonucleosides by thymine-requiring mutants of E. coli. Mol Gen Genet. 1971;110(4):289–298. doi: 10.1007/BF00438271. [DOI] [PubMed] [Google Scholar]
  2. Beck C. F., Eisenhardt A. R., Neuhard J. Deoxycytidine triphosphate deaminase of Salmonella typhimurium. Purification and characterization. J Biol Chem. 1975 Jan 25;250(2):609–616. [PubMed] [Google Scholar]
  3. Beck C. F., Ingraham J. L., Neuhard J. Location on the chromosome of Salmonella typhimurium of genes governing pyrimidine metabolism. II. Uridine kinase, cytosine deaminase and thymidine kinase. Mol Gen Genet. 1972;115(3):208–215. doi: 10.1007/BF00268884. [DOI] [PubMed] [Google Scholar]
  4. Beck C. F., Ingraham J. L., Neuhard J., Thomassen E. Metabolism of pyrimidines and pyrimidine nucleosides by Salmonella typhimurium. J Bacteriol. 1972 Apr;110(1):219–228. doi: 10.1128/jb.110.1.219-228.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edlin G., Maaloe O. Synthesis and breakdown of messenger RNA without protein synthesis. J Mol Biol. 1966 Feb;15(2):428–434. doi: 10.1016/s0022-2836(66)80118-3. [DOI] [PubMed] [Google Scholar]
  6. Hammer-Jespersen K., Munch-Petersen A. Mutants of Escherichia coli unable to metabolize cytidine: isolation and characterization. Mol Gen Genet. 1973 Nov 2;126(2):177–186. doi: 10.1007/BF00330992. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Neuhard J., Thomassen E. Turnover of the deoxyribonucleoside triphosphates in Escherichia coli 15 T during thymine starvation. Eur J Biochem. 1971 May 11;20(1):36–43. doi: 10.1111/j.1432-1033.1971.tb01359.x. [DOI] [PubMed] [Google Scholar]
  9. O'Donovan G. A., Edlin G., Fuchs J. A., Neuhard J., Thomassen E. Deoxycytidine triphosphate deaminase: characterization of an Escherichia coli mutant deficient in the enzyme. J Bacteriol. 1971 Feb;105(2):666–672. doi: 10.1128/jb.105.2.666-672.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pritchard R. H., Zaritsky A. Effect of thymine concentration on the replication velocity of DNA in a thymineless mutant of Escherichia coli. Nature. 1970 Apr 11;226(5241):126–131. doi: 10.1038/226126a0. [DOI] [PubMed] [Google Scholar]
  11. Randerath K., Randerath E. Ion-exchange thin-layer chromatography. XV. Preparation, properties and applications of paper-like PEI-cellulose sheets. J Chromatogr. 1966 Apr;22(1):110–117. doi: 10.1016/s0021-9673(01)97076-1. [DOI] [PubMed] [Google Scholar]
  12. Sunshine M. G., Kelly B. Extent of host deletions associated with bacteriophage P2-mediated eduction. J Bacteriol. 1971 Nov;108(2):695–704. doi: 10.1128/jb.108.2.695-704.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES