Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Jan;125(1):225–232. doi: 10.1128/jb.125.1.225-232.1976

Purification and properties of polyol dehydrogenase from Cephalosporium chrysogenus.

S Birken, M A Pisano
PMCID: PMC233356  PMID: 1374

Abstract

A polyol dehydrogenase of broad specificity was purified 178-fold from extracts of the filamentous fungus Cephalosporium chrysogenum. The enzyme was found to act as an oxido-reductase in two substrate-coenzyme systems: D-sorbitol (or xylitol)-nicotinamide-adenine dinucleotide (NAD) and D-mannitol-nicotinamide adenine dinucleotide phosphate (NADP). The dehydrogenase was composed of five isozymes, which, as a mixture, exhibited these properties: Km to D-sorbitol and D-mannitol, 7.15 to 10(-2) M; PH optimum, 9 to 10; molecular weight, 300,000 subunit weight, 29,000; PI, 5.8 to 7.5. The NADP-linked activity was labile to treatment with heat or ethylenediaminetetraacetic acid. Mixed substrate assays support the hypothesis that both NAD-, and NADP-linked activities are associated with isozymes of a single dehydrogenase.

Full text

PDF
232

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. Estimation of molecular size and molecular weights of biological compounds by gel filtration. Methods Biochem Anal. 1970;18:1–53. [PubMed] [Google Scholar]
  2. CHAKRAVORTY M., VEIGA L. A., BACILA M., HORECKER B. L. Pentose metabolism in Candida. II. The diphosphopyridine nucleotide-specific polyol dehydrogenase of Candida utilis. J Biol Chem. 1962 Apr;237:1014–1020. [PubMed] [Google Scholar]
  3. CHIANG C., KNIGHT S. G. Metabolism of d-xylose by moulds. Nature. 1960 Oct 1;188:79–81. doi: 10.1038/188079a0. [DOI] [PubMed] [Google Scholar]
  4. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  5. Desai B. M., Modi V. V., Shah V. K. Studies on polyol metabolism in Aspergillus niger. 3. Purification and properties of sorbitol dehydrogenase. Arch Mikrobiol. 1969;67(1):16–20. doi: 10.1007/BF00413677. [DOI] [PubMed] [Google Scholar]
  6. HERS H. G. [The mechanism of the formation of seminal fructose and fetal fructose]. Biochim Biophys Acta. 1960 Jan 1;37:127–138. doi: 10.1016/0006-3002(60)90086-x. [DOI] [PubMed] [Google Scholar]
  7. HORECKER B. L. PATHWAYS OF CARBOHYDRATE METABOLISM AND THEIR PHYSIOLOGICAL SIGNIFICANCE. J Chem Educ. 1965 May;42:244–253. doi: 10.1021/ed042p244. [DOI] [PubMed] [Google Scholar]
  8. HORWITZ S. B., KAPLAN N. O. HEXITOL DEHYDROGENASES OF BACILLUS SUBTILIS. J Biol Chem. 1964 Mar;239:830–838. [PubMed] [Google Scholar]
  9. Haglund H. Isoelectric focusing in pH gradients--a technique for fractionation and characterization of ampholytes. Methods Biochem Anal. 1971;19:1–104. doi: 10.1002/9780470110386.ch1. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Markert C. L., Møller F. MULTIPLE FORMS OF ENZYMES: TISSUE, ONTOGENETIC, AND SPECIES SPECIFIC PATTERNS. Proc Natl Acad Sci U S A. 1959 May;45(5):753–763. doi: 10.1073/pnas.45.5.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Talbot D. N., Yphantis D. A. Fluorescent monitoring of SDS gel electrophoresis. Anal Biochem. 1971 Nov;44(1):246–253. doi: 10.1016/0003-2697(71)90367-8. [DOI] [PubMed] [Google Scholar]
  13. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES