Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Feb;129(2):574–579. doi: 10.1128/jb.129.2.574-579.1977

Metabolism of pyrimidine bases and nucleosides in Bacillus subtilis.

B K Rima, I Takahashi
PMCID: PMC234978  PMID: 402352

Abstract

In Bacillus subtilis, uracil (Ura), uridine (Urd), and deoxyuridine (dUrd) are metabolized through pathways similar to those of enteric bacteria. Ura is probably converted to uridine 5'-monophosphate by uridine 5'-monophosphate pyrophosphorylase. More than 95% of dUrd added to cultures is converted to Ura and deoxyribose-1-phosphate. Although dUrd kinase activity is detectable in vitro, this enzyme does not seem to play an important role in the metabolism of dUrd. The metabolism of cytosine (Cyt), cytidine (Cyd), and deoxycytidine (dCyd) in B. subtilis appears to be different from that in enteric bacteria. Cytosine cannot be used by Ura-requiring mutants as pyrimidine source. dCyd is deaminated by dCyd-Cyd deaminase or phosphorylated to dCyd nucleotides by dCyd kinase. Cyd is deaminated by dCyd-Cyd deaminase of phosphorylated by Cyd kinase. This Cyd kinase activity has never been reported for B. subtilis.

Full text

PDF
575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BODMER W. F., GRETHER S. UPTAKE AND INCORPORATION OF THYMINE, THYMIDINE, URACIL, URIDINE, AND 5-FLUOROURACIL INTO THE NUCLEIC ACIDS OF BACILLUS SUBTILIS. J Bacteriol. 1965 Apr;89:1011–1014. doi: 10.1128/jb.89.4.1011-1014.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barlati S. Incorporation of uridine into Bacillus subtilis and SPP1 bacteriophage deoxyribonucleic acid. J Bacteriol. 1970 Jan;101(1):330–332. doi: 10.1128/jb.101.1.330-332.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bazill G. W., Karamata D. Temperature-sensitive mutants of B. subtilis defective in deoxyribonucleotide synthesis. Mol Gen Genet. 1972;117(1):19–29. [PubMed] [Google Scholar]
  4. Beck C. F., Ingraham J. L., Neuhard J., Thomassen E. Metabolism of pyrimidines and pyrimidine nucleosides by Salmonella typhimurium. J Bacteriol. 1972 Apr;110(1):219–228. doi: 10.1128/jb.110.1.219-228.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grenson M. The utilization of exogenous pyrimidines and the recycling of uridine-5'-phosphate derivatives in Saccharomyces cerevisiae, as studied by means of mutants affected in pyrimidine uptake and metabolism. Eur J Biochem. 1969 Dec;11(2):249–260. doi: 10.1111/j.1432-1033.1969.tb00767.x. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. O'Donovan G. A., Neuhard J. Pyrimidine metabolism in microorganisms. Bacteriol Rev. 1970 Sep;34(3):278–343. doi: 10.1128/br.34.3.278-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rima B. K., Takahashi I. The synthesis of nucleic acids in Bacillus subtilis infected with phage PBS 1. Can J Biochem. 1973 Sep;51(9):1219–1224. doi: 10.1139/o73-161. [DOI] [PubMed] [Google Scholar]
  9. Saunders P. P., Wilson B. A., Saunders G. F. Purification and comparative properties of a pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus. J Biol Chem. 1969 Jul 10;244(13):3691–3697. [PubMed] [Google Scholar]
  10. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tomita F., Takahashi I. A novel enzyme, dCTP deaminase, found in Bacillus subtilis infected with phage PBS I. Biochim Biophys Acta. 1969 Mar 18;179(1):18–27. doi: 10.1016/0005-2787(69)90117-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES