Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Feb;129(2):718–723. doi: 10.1128/jb.129.2.718-723.1977

Nitrogen fixation in nitrate reductase-deficient mutants of cultured rhizobia.

J D Pagan, W R Scowcroft, W F Dudman, A H Gibson
PMCID: PMC235003  PMID: 838684

Abstract

Forty-eight mutants unable to reduce nitrate were isolated from "cowpea" Rhizobium sp. strain 32Hl and examined for nitrogenase activity in culture. All but two of the mutants had nitrogenase activity comparable with the parental sttain and two nitrogenase-defective strains showed alterations in their symbiotic properties. One strain was unable to nodulate either Macroptilium atropurpureum or Vigna uguiculata and, with the other, nodules appeared promptly, but effective nitrogen fixation was delayed. These results, and the relatively low proportion of nitrate reductase mutants with impaired nitrogenase activity, do not support the proposed commanality between nitrogenase and nitrate reductase in cowpea rhizobia. Inhibition studies of the effect of nitrate and its reduction products on the nitrogenase activity in cultured strains 32Hl and the nitrate reductase-deficient, Nif+ strains, indicated that nitrogenase activity was sensitive to nitrite rather than to nitrate.

Full text

PDF
719

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergersen F. J., Turner G. L., Gibson A. H., Dudman W. F. Nitrogenase activity and respiration of cultures of Rhizobium spp. with special reference to concentrations of dissolved oxygen. Biochim Biophys Acta. 1976 Aug 24;444(1):164–174. doi: 10.1016/0304-4165(76)90233-6. [DOI] [PubMed] [Google Scholar]
  2. Dudman W. F. Antigenic analysis of Rhizobium japonicum by immunodiffusion. Appl Microbiol. 1971 Jun;21(6):973–985. doi: 10.1128/am.21.6.973-985.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Evans W. R., Keister D. L. Reduction of acetylene by stationary cultures of free-living Rhizobium sp. under atmospheric oxygen levels. Can J Microbiol. 1976 Jul;22(7):949–952. doi: 10.1139/m76-137. [DOI] [PubMed] [Google Scholar]
  4. Gibson A. H., Scowcroft W. R., Child J. J., Pagan J. D. Nitrogenase activity in cultured Rhizobium sp. strain 32H1: nutritional and physical considerations. Arch Microbiol. 1976 May 3;108(1):45–54. doi: 10.1007/BF00425092. [DOI] [PubMed] [Google Scholar]
  5. Keister D. L. Acetylene reduction by pure cultures of Rhizobia. J Bacteriol. 1975 Sep;123(3):1265–1268. doi: 10.1128/jb.123.3.1265-1268.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Keister D. L., Evans W. R. Oxygen requirement for acetylene reduction by pure cultures of rhizobia. J Bacteriol. 1976 Jul;127(1):149–153. doi: 10.1128/jb.127.1.149-153.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kennedy I. R., Rigaud J., Trinchant J. C. Nitrate reductase from bacteroides of Rhizobium japonicum: enzyme characteristics and possible interaction with nitrogen fixation. Biochim Biophys Acta. 1975 Jul 27;397(1):24–35. doi: 10.1016/0005-2744(75)90175-8. [DOI] [PubMed] [Google Scholar]
  8. Kondorosi A., Barabás I., Sváb Z., Orosz L., Sik T., Hotchkiss R. D. Evidence for common genetic determinants of nitrogenase and nitrate reductase in Rhizobium meliloti. Nat New Biol. 1973 Dec 5;246(153):153–154. doi: 10.1038/newbio246153a0. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Nason A., Lee K. Y., Pan S. S., Ketchum P. A., Lamberti A., DeVries J. Invitro formation of assimilatory reduced nicotinamide adenine dinucleotide phosphate: nitrate reductase from a Neurospora mutant and a component of molybdenum-enzymes. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3242–3246. doi: 10.1073/pnas.68.12.3242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Payne W. J. Reduction of nitrogenous oxides by microorganisms. Bacteriol Rev. 1973 Dec;37(4):409–452. doi: 10.1128/br.37.4.409-452.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Piéchaud M., Puig J., Pichinoty F., Azoulay E., Le Minor L. Mutations affectant la nitrate-réductase A et d'autres enzymes bactériennes d'oxydoréduction. Ann Inst Pasteur (Paris) 1967 Jan;112(1):24–37. [PubMed] [Google Scholar]
  13. Ruiz-Herrera J., Showe M. K., DeMoss J. A. Nitrate reductase complex of Escherichia coli K-12: isolation and characterization of mutants unable to reduce nitrate. J Bacteriol. 1969 Mar;97(3):1291–1297. doi: 10.1128/jb.97.3.1291-1297.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Scowcroft W. R., Gibson A. H., Pagan J. D. Nitrogen fixation in cultured cowpea Rhizobia: inhibition and regulation of nitrogenase activity. Biochem Biophys Res Commun. 1976 Nov 22;73(2):516–523. doi: 10.1016/0006-291x(76)90737-3. [DOI] [PubMed] [Google Scholar]
  15. Showe M. K., DeMoss J. A. Localization and regulation of synthesis of nitrate reductase in Escherichia coli. J Bacteriol. 1968 Apr;95(4):1305–1313. doi: 10.1128/jb.95.4.1305-1313.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tjepkema J., Evans H. J. Nitrogen fixation by free-living Rhizobium in a defined liquid medium. Biochem Biophys Res Commun. 1975 Jul 22;65(2):625–628. doi: 10.1016/s0006-291x(75)80192-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES