Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 May;130(2):812–817. doi: 10.1128/jb.130.2.812-817.1977

Control of beta-glucosidase synthesis in Mucor racemosus.

P Borgia, P S Sypherd
PMCID: PMC235285  PMID: 233721

Abstract

The beta-glucosidase of Mucor racemosus was shown to be synthesized when the organism was grown in the presence of such diverse carbon sources as glycerol, lactate, xylose, ribose, alpha-methylglucoside, alpha-phenylglucoside, maltose, and cellobiose. Enzyme synthesis was strongly repressed in the presence of hexoses. In addition, exogenous cyclic adenosine 3',5'-monophosphate (cAMP) resulted in enzyme repression. When cAMP was added exogenously after enzyme activity had accumulated, a reversible enzyme inactivation occurred. Growth on disaccharides (maltose or cellobiose) was severely retarded in the presence of cAMP, whereas that on glucose remained unaffected. The results indicate a probable role for cAMP in control of glucosidase synthesis in Mucor.

Full text

PDF
815

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams B. G. Method for decryptification of -glucosidase in yeast with dimethyl sulfoxide. Anal Biochem. 1972 Jan;45(1):137–146. doi: 10.1016/0003-2697(72)90014-0. [DOI] [PubMed] [Google Scholar]
  2. BARTNICKI-GARCIA S., NICKERSON W. J. Nutrition, growth, and morphogenesis of Mucor rouxii. J Bacteriol. 1962 Oct;84:841–858. doi: 10.1128/jb.84.4.841-858.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bates W. K., Hedman S. C., Woodward D. O. Comparative inductive responses of two beta-galactosidases of Neurospora. J Bacteriol. 1967 May;93(5):1631–1637. doi: 10.1128/jb.93.5.1631-1637.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eberhart B. M., Beck R. S. Induction of beta-glucosidases in Neurospora crassa. J Bacteriol. 1973 Oct;116(1):295–303. doi: 10.1128/jb.116.1.295-303.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fang M., Butow R. A. Nucleotide reversal of mitochondrial repression in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1970 Dec 24;41(6):1579–1583. doi: 10.1016/0006-291x(70)90568-1. [DOI] [PubMed] [Google Scholar]
  6. Flores-Carreón A., Reyes E., Ruíz-Herrera J. Influence of oxygen on maltose metabolism by Mucor rouxii. J Gen Microbiol. 1969 Nov;59(1):13–19. doi: 10.1099/00221287-59-1-13. [DOI] [PubMed] [Google Scholar]
  7. Görts C. P. Effect of glucose on the activity and the kinetics of the maltose-uptake system and of alpha-glucosidase in Saccharomyces cerevisiae. Biochim Biophys Acta. 1969 Jul 30;184(2):299–305. doi: 10.1016/0304-4165(69)90032-4. [DOI] [PubMed] [Google Scholar]
  8. Hanks D. L., Sussman A. S. Control of trehalase synthesis in Neurospora crassa. Am J Bot. 1969 Nov-Dec;56(10):1160–1166. [PubMed] [Google Scholar]
  9. KREBS E. G., LOVE D. S., BRATVOLD G. E., TRAYSER K. A., MEYER W. L., FISCHER E. H. PURIFICATION AND PROPERTIES OF RABBIT SKELETAL MUSCLE PHOSPHORYLASE B KINASE. Biochemistry. 1964 Aug;3:1022–1033. doi: 10.1021/bi00896a003. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Larsen A. D., Sypherd P. S. Cyclic adenosine 3',5'-monophosphate and morphogenesis in Mucor racemosus. J Bacteriol. 1974 Feb;117(2):432–438. doi: 10.1128/jb.117.2.432-438.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MAKMAN R. S., SUTHERLAND E. W. ADENOSINE 3',5'-PHOSPHATE IN ESCHERICHIA COLI. J Biol Chem. 1965 Mar;240:1309–1314. [PubMed] [Google Scholar]
  13. Montenecourt B. S., Kuo S. C., Lampen J. O. Saccharomyces mutants with invertase formation resistant to repression by hexoses. J Bacteriol. 1973 Apr;114(1):233–238. doi: 10.1128/jb.114.1.233-238.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paznokas J. L., Sypherd P. S. Respiratory capacity, cyclic adenosine 3',5'-monophosphate, and morphogenesis of Mucor racemosus. J Bacteriol. 1975 Oct;124(1):134–139. doi: 10.1128/jb.124.1.134-139.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Perlman R. L., Pastan I. Regulation of beta-galactosidase synthesis in Escherichia coli by cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1968 Oct 25;243(20):5420–5427. [PubMed] [Google Scholar]
  16. Sy J., Richter D. Content of cyclic 3',5'-adenosine monophosphate and adenylyl cyclase in yeast at various growth conditions. Biochemistry. 1972 Jul 18;11(15):2788–2791. doi: 10.1021/bi00765a009. [DOI] [PubMed] [Google Scholar]
  17. Tyler B., Magasanik B. Physiological basis of transient repression of catabolic enzymes in Escherichia coli. J Bacteriol. 1970 May;102(2):411–422. doi: 10.1128/jb.102.2.411-422.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Van Wijk R., Konijn T. M. Cyclic 3', 5'-amp in Saccharomyces carlsbergensis under various conditions of catabolite repression. FEBS Lett. 1971 Mar 5;13(3):184–186. doi: 10.1016/0014-5793(71)80231-4. [DOI] [PubMed] [Google Scholar]
  19. Zonneveld B. J. The effect of glucose and manganese on adenosine-3',5'-monophosphate levels during growth and differentiation of Aspergillus nidulans. Arch Microbiol. 1976 May 3;108(1):41–44. doi: 10.1007/BF00425091. [DOI] [PubMed] [Google Scholar]
  20. van der Plaat J. B. Cyclic 3',5'-adenosine monophosphate stimulates trehalose degradation in baker's yeast. Biochem Biophys Res Commun. 1974 Feb 4;56(3):580–587. doi: 10.1016/0006-291x(74)90643-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES