Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Jun;130(3):1091–1097. doi: 10.1128/jb.130.3.1091-1097.1977

In Vivo Aminoacylation of Transfer Ribonucleic Acid in Bacillus subtilis and Evidence for Differential Utilization of Lysine-Isoaccepting Transfer Ribonucleic Acid Species

Judith Tockman a,1, Barbara S Vold a,2
PMCID: PMC235331  PMID: 193829

Abstract

The presence or absence of certain amino acids has different effects on the ability of Bacillus subtilis to sporulate, and the intracellular pool size of amino acids has been reported to vary during sporulation. The idea that these variations might exert a regulatory effect through aminoacylation of transfer ribonucleic acid (tRNA) was investigated by studying the levels of aminoacylation in vivo in the logarithmic or stationary phase of growth. Both the periodate oxidation method and the amino acid analyzer were used to evaluate in vivo aminoacylation. The results indicated that in general the level of aminoacylation of tRNA's remained constant through stage III of sporulation, although there were detectable variations for specific amino acid groups. Our studies also showed that periodate oxidation damaged certain tRNA's; therefore, the results obtained by such a method should be interpreted with caution. Because the damage can affect certain isoaccepting species specifically, the periodate oxidation method cannot be used to establish which isoaccepting species are acylated in vivo. We also investigated the possibility of preferential use of particular tRNA species by polyribosomes. These results demonstrated a preferential use of lysyl-tRNA's at different growth stages. Control mechanisms operating during the early stages of sporulation, therefore, do not affect the overall level of aminoacylation. However, there is an effect on the levels of aminoacylation of specific amino acids and on which isoaccepting species are utilized by the polyribosome system.

Full text

PDF
1094

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark V. L., Peterson D. E., Bernlohr R. W. Changes in free amino acid production and intracellular amino acid pools of Bacillus licheniformis as a function of culture age and growth media. J Bacteriol. 1972 Nov;112(2):715–725. doi: 10.1128/jb.112.2.715-725.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Doering J. L., Bott K. F. Differential amino acid requirements for sporulation in Bacillus subtilis. J Bacteriol. 1972 Oct;112(1):345–355. doi: 10.1128/jb.112.1.345-355.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ehresmann B., Imbault P., Weil J. H. Determination of the degree of in vivo tRNA aminoacylation in yeast cells. Anal Biochem. 1974 Oct;61(2):548–556. doi: 10.1016/0003-2697(74)90423-0. [DOI] [PubMed] [Google Scholar]
  4. Folk W. R., Berg P. Characterization of altered forms of glycyl transfer ribonucleic acid synthetase and the effects of such alterations on aminoacyl transfer ribonucleic acid synthesis in vivo. J Bacteriol. 1970 Apr;102(1):204–212. doi: 10.1128/jb.102.1.204-212.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kano-Sueoka T., Sueoka N. Leucine tRNA and cessation of Escherichia coli protein synthesis upon phage T2 infection. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1229–1236. doi: 10.1073/pnas.62.4.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kasai H., Oashi Z., Harada F., Nishimura S., Oppenheimer N. J., Crain P. F., Liehr J. G., von Minden D. L., McCloskey J. A. Structure of the modified nucleoside Q isolated from Escherichia coli transfer ribonucleic acid. 7-(4,5-cis-Dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine. Biochemistry. 1975 Sep 23;14(19):4198–4208. doi: 10.1021/bi00690a008. [DOI] [PubMed] [Google Scholar]
  7. Lewis J. A., Ames B. N. Histidine regulation in Salmonella typhimurium. XI. The percentage of transfer RNA His charged in vivo and its relation to the repression of the histidine operon. J Mol Biol. 1972 Apr 28;66(1):131–142. doi: 10.1016/s0022-2836(72)80011-1. [DOI] [PubMed] [Google Scholar]
  8. Lipsett M. N., Doctor B. P. Studies on tyrosine transfer ribonucleic acid, a sulfur-rich species from Escherichia coli. J Biol Chem. 1967 Sep 25;242(18):4072–4077. [PubMed] [Google Scholar]
  9. McCutchan T. F., Gilham P. T., Söll D. An improved method for the purification of tRNA by chromatography on dihydroxyboryl substituted cellulose. Nucleic Acids Res. 1975 Jun;2(6):853–864. doi: 10.1093/nar/2.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rizzino A. A., Freundlich M. Estimation of in vivo aminoacylation by periodate oxidation: tRNA alterations and iodate inhibition. Anal Biochem. 1975 Jun;66(2):446–449. doi: 10.1016/0003-2697(75)90612-0. [DOI] [PubMed] [Google Scholar]
  11. Setlow P. Percent charging of transfer ribonucleic acid and levels of ppGpp and pppGpp in dormant and germinated spores of Bacillus megaterium. J Bacteriol. 1974 Jun;118(3):1067–1074. doi: 10.1128/jb.118.3.1067-1074.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Setlow P., Primus G., Deutscher M. P. Absence of 3'-terminal residues from transfer ribonucleic acid of dormant spores of Bacillus megaterium. J Bacteriol. 1974 Jan;117(1):126–132. doi: 10.1128/jb.117.1.126-132.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vold B. S. Analysis of isoaccepting transfer ribonucleic acid species of Bacillus subtilis: chromatographic differences between transfer ribonucleic acids from spores and cells in exponential growth. J Bacteriol. 1973 Feb;113(2):825–833. doi: 10.1128/jb.113.2.825-833.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vold B. Degree of completion of 3'-terminus of transfer ribonucleic acids of Bacillus subtilis 168 at various developmental stages and asporogenous mutants. J Bacteriol. 1974 Mar;117(3):1361–1362. doi: 10.1128/jb.117.3.1361-1362.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yegian C. D., Stent G. S. Differential aminoacylation of three species of isoleucine transfer RNA from Escherichia coli. J Mol Biol. 1969 Jan 14;39(1):59–71. doi: 10.1016/0022-2836(69)90333-7. [DOI] [PubMed] [Google Scholar]
  16. Yegian C. D., Stent G. S., Martin E. M. Intracellular condition of Escherichia coli transfer RNA. Proc Natl Acad Sci U S A. 1966 Apr;55(4):839–846. doi: 10.1073/pnas.55.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES