Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Jun;130(3):1125–1129. doi: 10.1128/jb.130.3.1125-1129.1977

Purification and Characterization of a Neutral Protease from Saccharomycopsis lipolytica

Ahmed T H Abdelal 1, Emily H Kennedy 1, Donald G Ahearn 1
PMCID: PMC235335  PMID: 16866

Abstract

Saccharomycopsis lipolytica 37-1 produced two inducible extracellular proteases, one under neutral or alkaline growth conditions and the second under acid conditions. Secretion of the neutral protease was repressed in the presence of glycerol or glucose, both of which supported rapid growth of the organism. Ammonium ions also repressed the secretion of the enzyme. The neutral protease activity copurified with esterase activity during ammonium sulfate fractionation, chromatography on diethylaminoethyl-cellulose, and gel filtration on Sephadex G-150. The molecular weight of the enzyme was estimated to be 42,000 by sucrose density gradient centrifugation and 38,500 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The purified enzyme had a pH optimum of 6.8. Phenylmethylsulfonylfluoride inhibited both protease and esterase activities, indicating the presence of a serine residue in the active center. Protease, but not esterase, activity was sensitive to ethylenediaminetetraacetate and was significantly activated by divalent ions. Dithiothreitol inhibited both protease and esterase activities, indicating the presence of a critical disulfide bridge. The enzyme hydrolyzed casein (Km = 25.6 μM) and hemoglobin as well as the nitrophenyl esters of tyrosine (Km = 2.4 mM), glycine, tryptophan, and phenylalanine.

Full text

PDF
1129

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahearn D. G., Meyers S. P., Nichols R. A. Extracellular proteinases of yeasts and yeastlike fungi. Appl Microbiol. 1968 Sep;16(9):1370–1374. doi: 10.1128/am.16.9.1370-1374.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boethling R. S. Purification and properties of a serine protease from Pseudomonas matophilia. J Bacteriol. 1975 Mar;121(3):933–941. doi: 10.1128/jb.121.3.933-941.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boethling R. S. Regulation of extracellular protease secretion in Pseudomonas maltophilia. J Bacteriol. 1975 Sep;123(3):954–961. doi: 10.1128/jb.123.3.954-961.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies G. E., Stark G. R. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci U S A. 1970 Jul;66(3):651–656. doi: 10.1073/pnas.66.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drucker H. Regulation of exocellular proteases in Neurospora crassa: metabolic requirements of the process. J Bacteriol. 1975 Jun;122(3):1117–1125. doi: 10.1128/jb.122.3.1117-1125.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kundu A. K., Das S., Manna S., Pal N. Extracellular proteinases of Aspergillus oryzae. Appl Microbiol. 1968 Nov;16(11):1799–1801. doi: 10.1128/am.16.11.1799-1801.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Litchfield C. D., Prescott J. M. Regulation of proteolytic enzyme production by Aeromonas proteolytica. I. Extracellular endopeptidase. Can J Microbiol. 1970 Jan;16(1):17–22. doi: 10.1139/m70-003. [DOI] [PubMed] [Google Scholar]
  9. MARTIN C. J., GOLUBOW J., AXELROD A. E. A rapid and sensitive spectrophotometric method for the assay of chymotrypsin. J Biol Chem. 1959 Feb;234(2):294–298. [PubMed] [Google Scholar]
  10. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  11. McDonald I. J., Chambers A. K. Regulation of proteinase formation in a species of Micrococcus. Can J Microbiol. 1966 Dec;12(6):1175–1185. doi: 10.1139/m66-159. [DOI] [PubMed] [Google Scholar]
  12. Morihara K., Oka T., Tsuzuki H. Multiple proteolytic enzymes of Streptomyces fradiae. Production, isolation, and preliminary characterization. Biochim Biophys Acta. 1967 Jul 11;139(2):382–397. doi: 10.1016/0005-2744(67)90042-3. [DOI] [PubMed] [Google Scholar]
  13. Morihara K., Tsuzuki H. Comparison of the specificities of various serine proteinases from microorganisms. Arch Biochem Biophys. 1969 Feb;129(2):620–634. doi: 10.1016/0003-9861(69)90223-9. [DOI] [PubMed] [Google Scholar]
  14. Oleniacz W. S., Pisano M. A. Proteinase production by a species of Cephalosporium. Appl Microbiol. 1968 Jan;16(1):90–96. doi: 10.1128/am.16.1.90-96.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Remold H., Fasold H., Staib F. Purification and characterization of a proteolytic enzyme from Candida albicans. Biochim Biophys Acta. 1968 Oct 8;167(2):399–406. doi: 10.1016/0005-2744(68)90219-2. [DOI] [PubMed] [Google Scholar]
  16. SINGH K., MARTIN S. M. Purification and properties of a protease from Penicillium cyaneo-fulvum. Can J Biochem Physiol. 1960 Sep;38:969–980. [PubMed] [Google Scholar]
  17. Somkuti G. A., Babel F. J. Conditions influencing the synthesis of acid protease by Mucor pusillus Lindt. Appl Microbiol. 1967 Nov;15(6):1309–1312. doi: 10.1128/am.15.6.1309-1312.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES