Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Jul;131(1):105–110. doi: 10.1128/jb.131.1.105-110.1977

Characterization of methylated neutral amino acids from Escherichia coli ribosomes.

F N Chang, C Budzilowicz
PMCID: PMC235397  PMID: 326752

Abstract

The methylated neutral amino acids from both 30S and 50S ribosomal subunits of an Escherichia coli K strain were characterized. The 50S ribosomal subunit contains three methylated neutral amino acids: N-monomethylalanine, N-monomethylmethionine, and an as yet unidentified methylated amino acid found in protein L11. Both N-monomethylalanine and N-monomethylmethionine were found in protein L33. The amount of N-monomethylmethionine in this protein, however, is variable but not more than 0.25 molecules per protein. Thus protein L33 from this E. coli K strain has heterogeneity in its N-terminal amino acid and can start with either N-monomethylalanine or N-monomethylmethionine. The N-monomethylmethionine residue was not derived from the reduction of N-formylmethionine in the protein. The 30S ribosomal subunit contains only one methylated neutral amino acid: N-monomethylalanine.

Full text

PDF
109

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alix J. H., Hayes D. Properties of ribosomes and RNA synthesized by Escherichia coli grown in the presence of ethionine. 3. Methylated proteins in 50 S ribosomes of E. coli EA2. J Mol Biol. 1974 Jun 15;86(1):139–159. doi: 10.1016/s0022-2836(74)80013-6. [DOI] [PubMed] [Google Scholar]
  2. Bishop D. H., Claybrook J. R., Spiegelman S. Electrophoretic separation of viral nucleic acids on polyacrylamide gels. J Mol Biol. 1967 Jun 28;26(3):373–387. doi: 10.1016/0022-2836(67)90310-5. [DOI] [PubMed] [Google Scholar]
  3. Brosius J., Chen R. The primary structure of protein L16 located at the peptidyltransferase center of Escherichia coli ribosomes. FEBS Lett. 1976 Sep 15;68(1):105–109. doi: 10.1016/0014-5793(76)80415-2. [DOI] [PubMed] [Google Scholar]
  4. Chang C. N., Chang N. Methylation of the ribosomal proteins in Escherichia coli. Nature and stoichiometry of the methylated amino acids in 50S ribosomal proteins. Biochemistry. 1975 Feb 11;14(3):468–477. doi: 10.1021/bi00674a002. [DOI] [PubMed] [Google Scholar]
  5. Chang C. N., Schwartz M., Chang F. N. Identification and characterization of a new methylated amino acid in ribosomal protein L33 of Escherichia coli. Biochem Biophys Res Commun. 1976 Nov 22;73(2):233–239. doi: 10.1016/0006-291x(76)90698-7. [DOI] [PubMed] [Google Scholar]
  6. Chang F. N., Chang C. N., Paik W. K. Methylation of ribosomal proteins in Escherichia coli. J Bacteriol. 1974 Nov;120(2):651–656. doi: 10.1128/jb.120.2.651-656.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaltschmidt E., Wittmann H. G. Ribosomal proteins. VII. Two-dimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. Anal Biochem. 1970 Aug;36(2):401–412. doi: 10.1016/0003-2697(70)90376-3. [DOI] [PubMed] [Google Scholar]
  8. Klagsbrun M., Furano A. V. Methylated amino acids in the proteins of bacterial and mammalian cells. Arch Biochem Biophys. 1975 Aug;169(2):529–539. doi: 10.1016/0003-9861(75)90196-4. [DOI] [PubMed] [Google Scholar]
  9. Means G. E., Feeney R. E. Reductive alkylation of amino groups in proteins. Biochemistry. 1968 Jun;7(6):2192–2201. doi: 10.1021/bi00846a023. [DOI] [PubMed] [Google Scholar]
  10. Moore V. G., Atchison R. E., Thomas G., Moran M., Noller H. F. Identification of a ribosomal protein essential for peptidyl transferase activity. Proc Natl Acad Sci U S A. 1975 Mar;72(3):844–848. doi: 10.1073/pnas.72.3.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nierhaus K. H., Montejo V. A protein involved in the peptidyltransferase activity of Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1931–1935. doi: 10.1073/pnas.70.7.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reporter M. Methylation of basic residues in structural proteins. Mech Ageing Dev. 1973 Mar;1(5):367–372. doi: 10.1016/0047-6374(73)90043-2. [DOI] [PubMed] [Google Scholar]
  13. Staehelin T., Maglott D. M., Monro R. E. On the catalytic center of peptidyl transfer: a part of the 50 S ribosome structure. Cold Spring Harb Symp Quant Biol. 1969;34:39–48. doi: 10.1101/sqb.1969.034.01.008. [DOI] [PubMed] [Google Scholar]
  14. Terhorst C., Wittmann-Liebold B., Möller W. 50-S ribosomal proteins. Peptide studies on two acidic proteins, A 1 and A 2 , isolated from 50-S ribosomes of Escherichia coli. Eur J Biochem. 1972 Jan 31;25(1):13–19. doi: 10.1111/j.1432-1033.1972.tb01661.x. [DOI] [PubMed] [Google Scholar]
  15. Wittmann-Liebold B., Greuer B., Pannenbecker R. The primary structure of protein L32 from the 50S subunit of Escherichia coli ribosomes. Hoppe Seylers Z Physiol Chem. 1975 Dec;356(12):1977–1979. [PubMed] [Google Scholar]
  16. Wittmann-Liebold B., Pannenbecker R. Primary structure of protein L33 from the large subunit of the Escherichia coli ribosome. FEBS Lett. 1976 Sep 15;68(1):115–118. doi: 10.1016/0014-5793(76)80417-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES