Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Apr;122(1):93–98. doi: 10.1128/jb.122.1.93-98.1975

Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids.

M Nieder, J Shapiro
PMCID: PMC235644  PMID: 804473

Abstract

Pseudomonas putida PpG6 is able to utilize purified n-alkanes of six to ten carbon atoms for growth. It can also grow on the primary terminal oxidation products of these alkanes and on 1-dodecanol but not on the corresponding 2-ketones or 1,6-hexanediol, adipic acid, or pimelic acid. Revertible point mutants can be isolated which have simultaneously lost the ability to grow on all five n-alkane growth substrates but which can still grow on octanol or nonanol. An acetate-negative mutant defective in isocitrate lysase activity is unable to grow on even-numbered alkanes and fatty acids. Analysis of double mutants defective in acetate and propionate or in acetate and glutarate metabolism shows that alkane carbon is assimilated only via acetyl-coenzyme A and propionyl-coenzyme A. These results support the following conclusions: (i) The n-alkane growth specificity of P. putida PpG6 is due to the substrate specificity of whole-cell alkane hydroxylation; (ii) there is a single alkane hydroxylase enzyme complex; (iii) the physiological role of this complex is to initiate the monoterminal oxidation of alkane chains; and (iv) straight-chain fatty acids from butyric through nonanoic are degraded exclusively by beta-oxidation from the carboxyl end of the molecule.

Full text

PDF
96

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALIKHAN M. Y., HALL A. N., ROBINSON D. S. PRODUCTS OF THE OXIDATION OF SELECTED ALKANES BY A GRAM-NEGATIVE BACTERIUM. Antonie Van Leeuwenhoek. 1964;30:417–427. doi: 10.1007/BF02046755. [DOI] [PubMed] [Google Scholar]
  2. BAPTIST J. N., GHOLSON R. K., COON M. J. Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim Biophys Acta. 1963 Jan 1;69:40–47. doi: 10.1016/0006-3002(63)91223-x. [DOI] [PubMed] [Google Scholar]
  3. Cerdá-Olmedo E., Hanawalt P. C., Guerola N. Mutagenesis of the replication point by nitrosoguanidine: map and pattern of replication of the Escherichia coli chromosome. J Mol Biol. 1968 May 14;33(3):705–719. doi: 10.1016/0022-2836(68)90315-x. [DOI] [PubMed] [Google Scholar]
  4. Chakrabarty A. M., Chou G., Gunsalus I. C. Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1137–1140. doi: 10.1073/pnas.70.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GHOLSON R. K., BAPTIST J. N., COON M. J. HYDROCARBON OXIDATION BY A BACTERIAL ENZYME SYSTEM. II. COFACTOR REQUIREMENTS FOR OCTANOL FORMATION FROM OCTANE. Biochemistry. 1963 Sep-Oct;2:1155–1159. doi: 10.1021/bi00905a043. [DOI] [PubMed] [Google Scholar]
  6. HERINGA J. W., HUYBREGTSE R., van der LINDEN A. n-Alkane oxidation by a Pseudomonas. Formation and beta-oxidation of intermediate fatty acids. Antonie Van Leeuwenhoek. 1961;27:51–58. doi: 10.1007/BF02538422. [DOI] [PubMed] [Google Scholar]
  7. KUSUNOSE M., KUSUNOSE E., COON M. J. ENZYMATIC OMEGA-OXIDATION OF FATTY ACIDS. II. SUBSTRATE SPECIFICITY AND OTHER PROPERTIES OF THE ENZYME SYSTEM. J Biol Chem. 1964 Jul;239:2135–2139. [PubMed] [Google Scholar]
  8. McKenna E. J., Coon M. J. Enzymatic omega-oxidation. IV. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans. J Biol Chem. 1970 Aug 10;245(15):3882–3889. [PubMed] [Google Scholar]
  9. Peterson J. A., Kusunose M., Kusunose E., Coon M. J. Enzymatic omega-oxidation. II. Function of rubredoxin as the electron carrier in omega-hydroxylation. J Biol Chem. 1967 Oct 10;242(19):4334–4340. [PubMed] [Google Scholar]
  10. ROBINSON D. S. OXIDATION OF SELECTED ALKANES AND RELATED COMPOUNDS BY A PSEUDOMONAS STRAIN. Antonie Van Leeuwenhoek. 1964;30:303–316. doi: 10.1007/BF02046736. [DOI] [PubMed] [Google Scholar]
  11. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  12. THIJSSE G. J., van der LINDEN A. Iso-alkane oxidation by a Pseudomonas. I. Metabolism of 2-methylhexane. Antonie Van Leeuwenhoek. 1961;27:171–179. doi: 10.1007/BF02538437. [DOI] [PubMed] [Google Scholar]
  13. THIJSSE G. J., van der LINDEN A. Pathways of hydrocarbon dissimilation by a Pseudomonas as revealed by chloramphenicol. Antonie Van Leeuwenhoek. 1963;29:89–100. doi: 10.1007/BF02046042. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES